Skip to main content

Advertisement

Log in

Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It is generally regarded that the petroleum cannot be renewable. However, in recent years, it has been found that many marine cyanobacteria, some eubacteria, engineered Escherichia coli, some endophytic fungi, engineered yeasts, some marine yeasts, plants, and insects can synthesize hydrocarbons with different carbon lengths. If the organisms, especially some native microorganisms and engineered bacteria and yeasts, can synthesize and secret a large amount of hydrocarbons within a short period, alkanes in the petroleum can be renewable. It has been documented that there are eight pathways for hydrocarbon biosynthesis in different organisms. Unfortunately, most of native microorganisms, engineered E. coli and engineered yeasts, only synthesize a small amount of intracellular and extracellular hydrocarbons. Recently, Aureobasidium pullulans var. melanogenum isolated from a mangrove ecosystem has been found to be able to synthesize and secret over 21.5 g/l long-chain hydrocarbons with a yield of 0.275 g/g glucose and a productivity of 0.193 g/l/h within 5 days. The yeast may have highly potential applications in alkane production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagaeva TV, Zinurova EE (2004) Comparative characterization of extracellular and intracellular hydrocarbons of Clostridium pasteurianum. Biochem Mosc 69:427–428[translated from Biokhimiya]

    Article  CAS  Google Scholar 

  • Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76:1212–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belyaeva MI, Zolotukhina LM, Bagaeva TV (1995) Method for the production of liquid hydrocarbons. Invention Certificate SU2027760 [in Russian].

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Liu L, Knight R, Alper HS (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165:184–194

    Article  CAS  PubMed  Google Scholar 

  • Buijs NA, Zhou YJ, Siewers V, Nielsen J (2014) Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng. doi:10.1002/bit.25522

    Google Scholar 

  • Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 10:4295–4303

    Article  Google Scholar 

  • Chi Z, Wang XX, Geng Q, Chi ZM (2013) Role of a GATA-type transcriptional repressor Sre1 in regulation of siderophore biosynthesis in the marine-derived Aureobasidium pullulans HN6.2. Biometals 26:955–967

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  PubMed  Google Scholar 

  • Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140. doi:10.1371/journal. pone.0085140

    Article  PubMed Central  PubMed  Google Scholar 

  • Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, Sismour AM, Kodira C, Egholm M, Church GM, Gerstein MB, Strobel SA (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8:1–49

    Article  Google Scholar 

  • Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549

    Article  PubMed Central  PubMed  Google Scholar 

  • Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Robert G, Egbert RG, Jeremy H, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59–62

    Article  CAS  PubMed  Google Scholar 

  • Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110:7636–7641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jansson C (2012) Metabolic engineering of cyanobacteria for direct conversion of CO2 to hydrocarbon biofuels. In: U. Luttge et al. (eds.), Progress in botany Vol. 73, Progress in botany 73, Springer-Verlag Berlin Heidelberg. Pp: 81–93.

  • Kallio P, Pa’sztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:473

    Article  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Open Plant Biol 12:721–727

    Article  CAS  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF (2010) A process for mcrobial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106:193–202

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liu GL, Chi Z, Chi ZM (2010) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biom Bioenergy 4:101–107

    Article  Google Scholar 

  • Liu A, Zhu T, Lu X, Song L (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393

    Article  CAS  Google Scholar 

  • Liu YY, Chi Z, Wang ZP, Liu GL, Chi ZM (2014a) Heavy oils, principally long‑chain n‑alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. J Ind Microbiol Biotechnol 41:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S (2014b) Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels 7:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, Deng Z, Liu T (2015) Engineering aniterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng 28:82–90

    Article  CAS  PubMed  Google Scholar 

  • Lux TM, Lee R, Love J (2011) Complete genome sequence of a free-living Vibrio furnissii sp. nov. strain (NCTC 11218). J Bacteriol 193:1487–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma ZC, Liu NN, Chi Z, Liu GL, Chi ZM (2015) Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin. Mar Biotechnol 17:511–522

    Article  CAS  PubMed  Google Scholar 

  • Mallette ND, Pankrantz EM, Busse S, Strobel GA, Carlson RP, Peyton B (2014) Evaluation of cellulose as a substrate for hydrocarbon fuel production by Ascocoryne sarcoides (NRRL 50072). J Sustain Bioen Syst 4:33–49

    Article  CAS  Google Scholar 

  • Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in alfa-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77:4264–4267

  • Nikolaev YA, Panikov NS, Lukin SM, Osipov GA (2001) Saturated C21–C33 hydrocarbons are involved in the self-regulation of Pseudomonas fluorescens adhesion to a glass surface. Microbiology (Moscow) 70:174–181[translated from Mikrobiologiya]

    Article  Google Scholar 

  • Park MO (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park MO, Heguri KK, Hirata K, Miyamoto K (2005) Production of alternatives to fuel oil from organic waste by the alkane-producing bacterium, Vibrio furnissii M1. J Appl Microbiol 98:324–331

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14,858–14,863

    Article  CAS  Google Scholar 

  • Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichiacoli. Metab Eng 25:227–237

    Article  CAS  PubMed  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2014) The story of mycodiesel. Curr Opin Microbiol 19:52–58

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett. doi:10.1007/s10529-015-1773-9

    PubMed  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010) Wide spread head-to-head hydrocarbon biosynthesis in bacteria and role of oleA. Appl Environ Microbiol 76:3850–3862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wackett LP, Frias JA, Seffernick JL, Sukovich DJ, Cameron SM (2007) Genomic and Biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl Environ Microbiol 73(22):7192–7198

  • Wang JM, Chi Z, Zhang T, Liu GL, Chi ZM (2011) 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol. Biom Bioen 35:3032–3039

    Article  CAS  Google Scholar 

  • Wang GY, Chi Z, Song B, Wang ZP, Chi ZM (2012) High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresour Technol 124:77–82

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photo-synthetic production of alka(e)nes. Biotechnol Biofuel 6:69. doi:10.1186/1754-6834-6-69

    Article  CAS  Google Scholar 

  • Wang CL, Li Y, Xin FH, Liu YY, Chi ZM (2014a) Single cell oil production by Aureobasidium pullulans var. melanogenum P10 isolated from mangrove systems for biodiesel making. Process Biochem 49:725–731

    Article  CAS  Google Scholar 

  • Wang ZP, Fu WJ, Xu HM, Chi ZM (2014b) Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresour Technol 161:131–136

    Article  CAS  PubMed  Google Scholar 

  • Wang GY, Zhang Y, Chi Z, Liu GL, Wang ZP, Chi ZM (2015) Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol 99:1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang SK, Wang F, Guo C, Liu CZ (2014) Improved biomass and Hydrocarbon productivity of Botryococcus braunii by periodic ultrasound stimulation. Bioenerg Res 7:986–992

    Article  CAS  Google Scholar 

  • Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521–1529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Foundation of China (grant number: 31561163001).

Conflict of interest

All the authors in this manuscript declare that they have no conflict of interest and this article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, WJ., Chi, Z., Ma, ZC. et al. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 99, 7481–7494 (2015). https://doi.org/10.1007/s00253-015-6840-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6840-6

Keywords

Navigation