Skip to main content

Biopetrochemicals via Biocatalysis by Hydrocarbons Microbes and their Enzymes

  • Living reference work entry
  • First Online:
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 138 Accesses

Abstract

Hydrocarbon-degrading organisms are an important source for industrial relevant reactions. The respective degradation pathways harbor oxidoreductases, an enzyme class catalyzing highly interesting reactions for the production of high value added compounds and fine chemicals. Exploiting these reactions for biocatalysis requires the development of different reaction concepts, as hydrocarbons are often problematic substrates in terms of toxicity and solubility. This chapter will present the development of various reaction concepts for the technical utilization of hydrocarbon degrading organisms and their respective enzymes as biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abril MA, Michan C, Timmis KN, Ramos JL (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171:6782–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander AK, Biedermann D, Fink MJ, Mihovilovic MD, Mattes TE (2012) Enantioselective oxidation by a cyclohexanone monooxygenase from the xenobiotic-degrading Polaromonas sp. strain JS666. J Mol Catal B Enzym 78:105–110

    Article  CAS  Google Scholar 

  • Baldwin CVF, Wohlgemuth R, Woodley JM (2008) The first 200-l scale asymmetric Baeyer-Villiger oxidation using a whole-cell biocatalyst. Org Process Res Dev 12:660–665

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Blank LM, Ionidis G, Ebert BE, Buehler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

    Article  CAS  PubMed  Google Scholar 

  • Bosetti A, van Beilen JB, Preusting H, Lageveen RG, Witholt B (1992) Production of primary aliphatic-alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme-system. Enzym Microb Technol 14:702–708

    Article  CAS  Google Scholar 

  • Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM (2002) Biodegradation of cis -Dichloroethene as the sole carbon source by a β biodegradation of cis -Dichloroethene as the sole carbon source by a β -Proteobacterium. Appl Environ Microbiol 68:2726–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrado RJ, Gonzalez R (2014) Envisioning the bioconversion of methane to liquid fuels. Science 343:621–623

    Article  CAS  PubMed  Google Scholar 

  • Dalvi S, Nicholson C, Najar F, Roe BA, Canaan P, Hartson SD, Fathepure BZ (2014) Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 80:6664–6676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Smet MJ, Wynberg H, Witholt B (1981) Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two-phase system containing high concentrations of 1-octene. Appl Environ Microbiol 42:811–816

    PubMed  PubMed Central  Google Scholar 

  • de Smet MJ, Kingma J, Wynberg H, Witholt B (1983) Pseudomonas oleovorans as a tool in bioconversions of hydrocarbons: growth, morphology and conversion characteristics in different two-phase systems. Enzym Microb Technol 5:352–360

    Article  Google Scholar 

  • Dobslaw D, Engesser KH (2012) Degradation of 2-chlorotoluene by Rhodococcus sp. OCT 10. Appl Microbiol Biotechnol 93:2205–2214

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Avenell PJ, Bird PA, Gallati P, Lander KS, Lye GJ, Wohlgemuth R, Woodley JM (2002) Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol Prog 18:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Simpson H, Alphand V, Furstoss R, Woodley JM (2003) Characterization of a recombinant Escherichia coli top10 [pqr239] whole-cell biocatalyst for stereoselective Baeyer-Villiger oxidations. Enzym Microb Technol 32:347–355

    Article  CAS  Google Scholar 

  • Fuchs G (2008) Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125:82–99

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi K (1986) A fermentation process for the production of optically active epoxides. Chem Econ Eng Rev 18:21–26

    CAS  Google Scholar 

  • Furuhashi K, Taoka A, Uchida S, Karube I, Suzuki A (1981) Production of 1,2-epoxyalkanes from 1-alkenes by Nocardia Corallina B-276. Eur J Appl Microbiol Biotechnol 12:39–45

    Article  CAS  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, Inc., New York, pp 181–252

    Google Scholar 

  • Gross R, Hauer B, Otto K, Schmid A (2007) Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng 98:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA, Timmis KN (1989) Characterization of five genes in the upper-pathway operon of TOL plasmid pww0 from Pseudomonas putida and identification of the gene products. J Bacteriol 171:5048–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilker I, Alphand W, Wohlgemuth R, Furstoss R (2004) Microbial transformations, 56. Preparative scale asymmetric Baeyer-Villiger oxidation using a highly productive “two-in-one” resin-based in situ SFPR concept. Adv Synth Catal 346:203–214

    Article  CAS  Google Scholar 

  • Hilker I, Wohlgemuth R, Alphand V, Furstoss R (2005) Preparative scale asymmetric microbial Baeyer-Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92:702–710

    Article  CAS  PubMed  Google Scholar 

  • Hüsken LE, Beeftink R, de Bont JA, Wery J (2001a) High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol 55:571–577

    Article  PubMed  Google Scholar 

  • Hüsken LE, Dalm MCF, Tramper J, Wery J, de Bont JA, Beeftink R (2001b) Integrated bioproduction and extraction of 3-methylcatechol. J Biotechnol 88:11–19

    Article  PubMed  Google Scholar 

  • Hüsken LE, de Bont JAM, Beeftink R, Tramper J, Wery J (2002) Optimisation of microbial 3-methylcatechol production as affected by culture conditions. Biocatal Biotransform 20:57–61

    Article  Google Scholar 

  • Karande R, Halan B, Schmid A, Buehler K (2014) Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol Bioeng 111:1831–1840

    Article  CAS  PubMed  Google Scholar 

  • Karande R, Debor L, Salamanca D, Bogdahn F, Engesser KH, Buehler K, Schmid A (2016) Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng 113:52–61

    Article  CAS  PubMed  Google Scholar 

  • Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew Chem Int Ed Eng 31:774–775

    Article  Google Scholar 

  • Ladkau N, Assmann M, Schrewe M, Julsing MK, Schmid A, Bühler B (2016) Efficient production of the nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli. Metab Eng 36:1–9

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Webb JS, Kjelleberg S, Rosche B (2006) Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilms in fine-chemical production. Appl Environ Microbiol 72:1639–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lode ET, Coon MJ (1971) Enzymatic ω-oxidation. J Biol Chem 246:791–802

    CAS  PubMed  Google Scholar 

  • Mathys RG, Schmid A, Witholt B (1999) Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation. Biotechnol Bioeng 64:459–477

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna EJ, Coon MJ (1970) Enzymatic ω-oxidation. J Biol Chem 245:3882–3889

    CAS  PubMed  Google Scholar 

  • Miura A, Dalton H (1995) Purification and characterization of the alkene monooxygenase from Nocardia corallina B-276. Biosci Biotechnol Biochem 59:853–859

    Article  CAS  Google Scholar 

  • Nishino SF, Shin KA, Gossett JM, Spain JC (2013) Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666. Appl Environ Microbiol 79:2263–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto K, Hofstetter K, Roethlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120: a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JB, Bühler B, Panke S, Witholt B, Schmid A (2007) Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120ΔC. Biotechnol Bioeng 98:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Peterson JA, Coon MJ (1968) Enzymatic ω-oxidation. III. Purification and properties of rubredoxin, a component of the ω-hydroxylation system of Pseudomonas oleovorans. J Biol Chem 243:329–334

    CAS  PubMed  Google Scholar 

  • Peterson JA, Kusunose M, Kusunose E, Coon MJ (1967) Enzymatic ω-oxidation II Function of rubredoxin as the electron carrier in ω-hydroxylation. J Biol Chem 242:4334–4340

    CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Rogers EJ, Gibson DT (1977) Purification and properties of cis-toluene dihydrodiol dehydrogenase from Pseudomonas putida. J Bacteriol 130:1117–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988) Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54:323–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothen SA, Sauer M, Sonnleitner B, Witholt B (1998) Biotransformation of octane by E. coli HB101[pGEc47] on defined medium: octanoate production and product inhibition. Biotechnol Bioeng 58:356–365

    Article  CAS  PubMed  Google Scholar 

  • Ruettinger T, Olson ST, Boyer R, Coon MJ (1974) Identification of the ω-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity. Biochem Biophys Res Commun 57:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Ruettinger T, Griffith GR, Coon MJ (1977) Characterization of the ω-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein. Arch Biochem Biophys 183:528–537

    Article  CAS  PubMed  Google Scholar 

  • Salamanca D, Engesser KH (2014) Isolation and characterization of two novel strains capable of using cyclohexane as carbon source. Environ Sci Pollut Res 21:12757–12766

    Article  CAS  Google Scholar 

  • Salamanca D, Karande R, Schmid A, Dobslaw D (2015) Novel cyclohexane monooxygenase from Acidovorax sp. CHX100. Appl Microbiol Biotechnol 99:6889–6897

    Article  CAS  PubMed  Google Scholar 

  • Salamanca D, Dobslaw D, Engesser K-H (2017) Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere 176:97–107

    Article  CAS  PubMed  Google Scholar 

  • Scheps D, Malca SH, Hoffmann H, Nestl BM, Hauer B (2011) Regioselective omega-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Org Biomol Chem 9:6727–6733

    Article  CAS  PubMed  Google Scholar 

  • Schmutzler K, Kupitz K, Schmid A, Buehler K (2016) Hyperadherence of Pseudomonas taiwanensis VLB120dC increases productivity of (S)-styrene oxide formation. Microb Biotechnol 10:735–744

    Google Scholar 

  • Schwartz RD (1973) Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans. Appl Microbiol 25:574–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz RD, McCoy CJ (1973) Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements. Appl Microbiol 26:217–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz RD, McCoy CJ (1977) Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane. Appl Environ Microbiol 34:47–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shennan JL (2006) Utilisation of C2-C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol 81:237–256

    Article  CAS  Google Scholar 

  • Sikkema J, Poolman B, Konings WN, de Bont JA (1992) Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J Bacteriol 174:2986–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson HD, Alphand V, Furstoss R (2001) Microbiological transformations 49. Asymmetric biocatalysed Baeyer-Villiger oxidation: improvement using a recombinant Escherichia coli whole cell biocatalyst in the presence of an adsorbent resin. J Mol Catal B Enzym 16:101–108

    Article  CAS  Google Scholar 

  • Staijen IE, Hatzimanikatis V, Witholt B (1997) The AlkB monooxygenase of Pseudomonas oleovorans. Synthesis, stability and level in recombinant Escherichia coli and the native host. J Biochem 244:462–470

    CAS  Google Scholar 

  • Subramanian V, Liu TN, Yeh WK, Narro M, Gibson DT (1981) Purification and properties of NADH-ferredoxin TOL reductase. A component of toluene dioxygenase from Pseudomonas putida. J Biol Chem 256:2723–2730

    CAS  PubMed  Google Scholar 

  • Subramanian V, Liu TN, Yeh WK, Serdar CM, Wackett LP, Gibson DT (1985) Purification and properties of ferredoxinTOL. a component of toluene dioxygenase from Pseudomonas putida F1. J Biol Chem 260:2355–2363

    CAS  PubMed  Google Scholar 

  • Taggart MS (1946) Utilization of hydrocarbons. U.S. patent office no. 2396900

    Google Scholar 

  • Ueda T, Coon MJ (1972) Enzymatic ω-oxidation. VII Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in ω-hydroxylation. J Biol Chem 247:5010–5016

    CAS  PubMed  Google Scholar 

  • van Beilen J, Penninga D, Witholt B (1992a) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267:9194–9201

    PubMed  Google Scholar 

  • van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B (1992b) DNA sequence determination and functional characterization of the oct-plasmid-encoded alkjkl genes of Pseudomonas oleovorans. Mol Microbiol 6:3121–3126

    Article  PubMed  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Willrodt C, Halan B, Karthaus L, Rehdorf J, Julsing MK, Buehler K, Schmid A (2016) Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow. Biotechnol Bioeng 114:281–290

    Article  PubMed  Google Scholar 

  • Witholt B, de Smet M-J, Kingma J, van Beilen JB, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52

    Article  CAS  PubMed  Google Scholar 

  • Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wubbolts MG, FavreBulle O, Witholt B (1996) Biosynthesis of synthons in two-liquid-phase media. Biotechnol Bioeng 52:301–308

    Article  CAS  PubMed  Google Scholar 

  • Yeh WK, Gibson DT, Liu T-N (1977) Toluene dioxygenase: a multicomponent enzyme system. Biochem Biophys Res Commun 78:401–410

    Article  CAS  PubMed  Google Scholar 

  • Zylstra GJ, Gibson DT (1989) Toluene degradation by pseudomonas putida F1 - nucleotide-sequence of the todc1c2bade genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946

    CAS  PubMed  Google Scholar 

  • Zylstra GJ, Mccombie WR, Finette BA (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54:1498–1503

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Buehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Karande, R., Schmid, A., Buehler, K. (2017). Biopetrochemicals via Biocatalysis by Hydrocarbons Microbes and their Enzymes. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_213-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_213-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics