Skip to main content
Log in

Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Clean-up of vinyl chloride (VC)-contaminated groundwater could be enhanced by stimulating aerobic VC-oxidizing bacterial populations (e.g., methanotrophs) with amendments such as molecular oxygen. In addition, ethene gas injection could further stimulate a different group of aerobic ethene- and VC-oxidizing bacteria called “etheneotrophs.” We estimated the abundance and activity of these different VC-oxidizing bacteria in portions of a dilute groundwater VC plume subjected to oxygen and ethene biostimulation. Pyrosequencing of 16S rRNA genes, amplified from community DNA extracted from five groundwater monitoring wells, revealed that Proteobacteria dominated the microbial community. Among the Proteobacteria, methanotroph relative abundance was 6.00 % (well RB52I), 2.81 % (well RB46D), 56.3 % (well RB58I), 23.8 % (well RB63I), and 2.57 % (well RB64I). Reverse transcription qPCR (RT-qPCR) analysis was used to determined methanotroph and etheneotroph functional gene expression from selected monitoring wells. Resulting transcript per gene ratios for methanotroph functional genes (pmoA and mmoX) were 0.013 (RB46D), 0.017 (RB63I), 0.112 (RB64I), and 0.004 (RB46D), 0.239 (RB63I), and 0.199 (RB64I), respectively. Transcript per gene ratios for etheneotroph functional genes (etnC and etnE) were 0.37 (RB46D), 0.81 (RB63I), 5.85 (RB64I), and 0.38 (RB46D), 0.67 (RB63I), and 2.28 (RB64I), respectively. When considered along with geochemical and contaminant data from these wells, our RT-qPCR results suggest that methanotrophs and etheneotrophs were participating in VC cometabolism. We conclude that these molecular diagnostic techniques could be helpful to site managers interested in documenting the effectiveness of VC bioremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbai N, Pillay B (2013) Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing. Mol Biotechnol 54(3):900–912

    Article  CAS  PubMed  Google Scholar 

  • Amos BK, Ritalahti KM, Cruz-Garcia C, Padilla-Crespo E, Loffler FE (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ Sci Technol 42(15):5718–5726

    Article  CAS  PubMed  Google Scholar 

  • Atashgahi S, Maphosa F, Doğan E, smidt H, Springael D, Dejonghe W (2013) Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones, vol 84,

  • Begley JF, Hansen E, Wells AK, Fogel S, Begley GS (2009) Assessment and monitoring tools for aerobic bioremediation of vinyl chloride in groundwater. Remediat J 20(1):107–117

    Article  Google Scholar 

  • Begley JF, Czarnecki M, Kemen S, Verardo A, Robb AK, Fogel S, Begley GS (2012) Oxygen and ethene biostimulation for a persistent dilute vinyl chloride plume. Ground Water Monit Remediat 32(1):99–105

    Article  CAS  Google Scholar 

  • Bibby K, Viau E, Peccia J (2010) Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44(14):4252–4260

    Article  CAS  PubMed  Google Scholar 

  • Bradley PM (2011) Reinterpreting the importance of oxygen-based biodegradation in chloroethene-contaminated groundwater. Ground Water Monit Remediat 31(4):50–55

    Article  CAS  Google Scholar 

  • Bucher JR, Cooper G, Haseman JK, Jameson CW, Longnecker M, Kamel F, Maronpot R, Matthews HB, Melnick R, Newbold R, Tennant RW, Thompson C, Waalkes M (2005) Report on carcinogens, Eleventh edn. Public Health Service, National Toxicology Program, U.S. Department of Health and Human Services

    Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Chuang AS, Jin YO, Schmidt LS, Li Y, Fogel S, Smoler D, Mattes TE (2010) Proteomic analysis of ethene-enriched groundwater microcosms from a vinyl chloride-contaminated site. Environ Sci Technol 44(5):1594–1601

    Article  CAS  PubMed  Google Scholar 

  • Coleman NV, Spain JC (2003) Epoxyalkane:coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol 185(18):5536–5545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68(12):6162–6171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman NV, Wilson NL, Barry K, Brettin TS, Bruce DC, Copeland A, Dalin E, Detter JC, Glavina del Rio T, Goodwin LA, Hammon NM, Han S, Hauser LJ, Israni S, Kim E, Kyrpides N, Land ML, Lapidus A, Larimer FW, Lucas S, Pitluck S, Richardson P, Schmutz J, Tapia R, Thompson S, Tice HN, Spain JC, Gossett JG, Mattes TE (2011) Genome sequence of the ethene- and vinyl chloride-oxidizing actinomycete Nocardioides sp. strain JS614. J Bacteriol 193(13):3399–3400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cupples AM (2008) Real-time PCR quantification of Dehalococcoides populations: methods and applications. J Microbiol Methods 72(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882

    Article  CAS  PubMed  Google Scholar 

  • Freedman DL, Herz SD (1996) Use of ethylene and ethane as primary substrates for aerobic cometabolism of vinyl chloride. Water Environ Res 68:320–328

    Article  Google Scholar 

  • Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fullerton H, Rogers R, Freedman D, Zinder S (2014) Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater. Biodegradation 25(6):893–901

    Article  CAS  PubMed  Google Scholar 

  • Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM, Omori T (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62(10):1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Gossett JM (2010) Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol 44(4):1405–1411

    Article  CAS  PubMed  Google Scholar 

  • He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL, Li X, Wu L, Gentry TJ, Yin Y, Liebich J, Hazen TC, Zhou J (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4(9):1167–1179

    Article  CAS  PubMed  Google Scholar 

  • Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry K, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4(5):660–672

    Article  CAS  PubMed  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132(3):203–208

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Mattes TE (2008) Adaptation of aerobic, ethene-assimilating Mycobacterium strains to vinyl chloride as a growth substrate. Environ Sci Technol 42(13):4784–4789

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Mattes TE (2010) A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Environ Sci Technol 44(23):9036–9041

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Mattes TE (2011) Assessment and modification of degenerate qPCR primers that amplify functional genes from etheneotrophs and vinyl chloride-assimilators. Lett Appl Microbiol 53(5):576–580

    Article  CAS  PubMed  Google Scholar 

  • Jin YO, Cheung S, Coleman NV, Mattes TE (2010) Association of missense mutations in epoxyalkane coenzyme M transferase with adaptation of Mycobacterium sp. strain JS623 to growth on vinyl chloride. Appl Environ Microbiol 76(11):3413–3419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson DR, Lee PK, Holmes VF, Alvarez-Cohen L (2005a) An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71(7):3866–3871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson DR, Lee PK, Holmes VF, Fortin AC, Alvarez-Cohen L (2005b) Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Appl Environ Microbiol 71(11):7145–7151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kielhorn J, Melber C, Wahnschaffe U, Aitio A, Mangelsdorf I (2000) Vinyl chloride: still a cause for concern. Environ Health Perspect 108(7):579–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koziollek P, Bryniok, D., Knackmuss HJ (1999) Ethene as an auxiliary substrate for the cooxidation of cis-dichloroethene and vinyl chloride. Arch Microbiol 172:240-246

    Article  CAS  PubMed  Google Scholar 

  • Lee PKH, Macbeth TW, Sorenson KS, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of Dehalococcoides spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74(9):2728–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livermore JA, Jin YO, Arnseth RW, LePuil M, Mattes TE (2013) Microbial community dynamics during acetate biostimulation of RDX-contaminated groundwater. Environ Sci Technol 47(14):7672–7678

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Lyew D, Guiot S (2003) Effects of aeration and organic loading rates on degradation of trichloroethylene in a methanogenic-methanotrophic coupled reactor. Appl Microbiol Biotechnol 61(3):206–213

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Coleman NV, Gossett JM, Spain JC (2005) Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch Microbiol 183:95–106

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Coleman NV, Chuang AS, Rogers AJ, Spain JC, Gossett JM (2007) Mechanism controlling the extended lag period associated with vinyl chloride starvation in Nocardioides sp. strain JS614. Arch Microbiol 187(3):217–226

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34(4):435–475

    Article  Google Scholar 

  • Mayer-Blackwell K, Azizian MF, Machak C, Vitale E, Carpani G, de Ferra F, Semprini L, Spormann AM (2014) Nanoliter qPCR platform for highly parallel, quantitative assessment of reductive dehalogenase genes and populations of dehalogenating microorganisms in complex environments. Environ Sci Technol 48(16):9659–9667

    Article  CAS  PubMed  Google Scholar 

  • Owens CR, Karceski JK, Mattes TE (2009) Gaseous alkene biotransformation and enantioselective epoxyalkane formation by Nocardioides sp. strain JS614. Appl Microbiol Biotechnol 84(4):685–692

    Article  CAS  PubMed  Google Scholar 

  • Paszczynski A, Paidisetti R, Johnson A, Crawford R, Colwell F, Green T, Delwiche M, Lee H, Newby D, Brodie E, Conrad M (2011) Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. Biodegradation 22(6):1045–1059

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Loffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72(4):2765–2774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):14

    Google Scholar 

  • Semprini L, McCarty PL (1991) Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics: part 1. Biostimulation of methanotrophic bacteria. Ground Water 29(3):365–374

    Article  CAS  Google Scholar 

  • Semrau J (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26(6):561–575

    Article  CAS  PubMed  Google Scholar 

  • Taylor AE, Dolan ME, Bottomley PJ, Semprini L (2007) Utilization of fluoroethene as a surrogate for aerobic vinyl chloride transformation. Environ Sci Technol 41(18):6378–6383

    Article  CAS  PubMed  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL (2001) Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environ Sci Technol 35(21):4242–4251

    Article  CAS  PubMed  Google Scholar 

  • Xiu Z-M, Gregory KB, Lowry GV, Alvarez PJJ (2011) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bill Richard of EST Associates, Inc. for collecting groundwater samples and Jim Begley with MT Environmental Restoration for coordinating site access and providing groundwater geochemical and contaminant data collected from the Carver site monitoring wells. This work was funded by the Strategic Environmental Research and Development Program (SERDP) under project ER-1683.

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This work complies with the Ethical Standards of the Committee on Publication Ethics (COPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Mattes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattes, T.E., Jin, Y.O., Livermore, J. et al. Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene. Appl Microbiol Biotechnol 99, 9267–9276 (2015). https://doi.org/10.1007/s00253-015-6771-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6771-2

Keywords

Navigation