Skip to main content
Log in

Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monascus species can produce various secondary metabolites of polyketide structure. In the current study, it is found that an interesting phenomenon, i.e., submerged culture of Monascus species in an aqueous solution majorly accumulated intracellular orange Monascus pigments exhibiting one peak at 470 nm with absorbance of 32 OD while extractive fermentation in a nonionic surfactant micelle aqueous solution produced extracellular and intracellular yellow Monascus pigments exhibiting one peak at 410 nm with absorbance 30 OD and 12 OD, respectively. The spectrum profiles of both intracellular and extracellular Monascus pigments were affected by surfactant loading, extractive fermentation time, and surfactant adding time. Meanwhile, the instability of orange Monascus pigments in the extracellular nonionic surfactant micelle aqueous solution was also confirmed experimentally. The mechanism behind this phenomenon is attributed to the export of intracellular yellow Monascus pigments into its broth by extractive fermentation. The transferring of intracellular yellow Monascus pigments into its broth blocks yellow Monascus pigments from further enzymatic conversion or eliminates the feedback inhibition of yellow Monascus pigments based on the biosynthetic pathway of Monascus pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babitha S, Soccol CR, Pandey A (2007) Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J Basic Microbiol 47:118–126

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan B, Karki S, Chiu S-H, Kim H-J, Suh J-W, Nam B, Yoon Y-M, Chen C-C, Kwon H-J (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan B, Kim H-J, Suh J-W, Chen C-C, Liu K-H, Park S-H, Kwon H-J (2014) Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Korean Soc Appl Biol Chem 57(2):191–196

    Article  Google Scholar 

  • Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96(6):1421–1440

    Article  CAS  PubMed  Google Scholar 

  • Hajjaj H, Klaébé A, Goma G, Blanc PJ, Barbier E, Franceois J (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66:1120–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu Y-W, Lee B-H, Liao T-H, Hsu Y-W, Pan T-M (2012) Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem Toxic 50:1178–1186

    Article  CAS  Google Scholar 

  • Hu Z, Zhang X, Wu Z, Qi H, Wang Z (2012) Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 94:81–89

    Article  CAS  PubMed  Google Scholar 

  • Hus L-C, Hsu Y-W, Liang Y-H, Kuo Y-H, Pan T-M (2011) Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J Agric Food Chem 59:1124–1130

    Article  Google Scholar 

  • Jeong H (2014) Solid-state bio-fermenter for modern biofermented medicinal foods. Proceedings of symposium on Hongqu and fermented herbal medicines (Wuhan, China), p 171–175

  • Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    Article  CAS  PubMed  Google Scholar 

  • Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  • Kang B, Zhang X, Wu Z, Qi H, Wang Z (2013a) Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Process Biochem 48:759–767

    Article  CAS  Google Scholar 

  • Kang B, Zhang X, Wu Z, Qi H, Wang Z (2013b) Solubilization capacity of nonionic surfactant micelles strong influence on export of intracellular pigments in Monascus fermentation. Microb Biotechnol 6:540–550

    Article  PubMed Central  PubMed  Google Scholar 

  • Krairak S, YamamurA K, Irie R, Nakajima M, Shimizu H, Chim-Anage P, Yongsmith B, Dhioya S (2000) Maximizing yellow pigment production in fed-batch culture of Monascus sp. J Biosci Bioeng 90:363–367

    Article  CAS  PubMed  Google Scholar 

  • Lee C-L, Kung Y-H, Wu C-L, Hsu Y-W, Pan T-M (2010) Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013–9019

    Article  CAS  PubMed  Google Scholar 

  • Lee C-L, Wen J-Y, Hsu Y-W, Pan T-M (2013) Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J Agric Food Chem 61:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179

    Article  CAS  Google Scholar 

  • Liu Q, Xie N, He Y, Wang L, Shao Y, Zhao H, Chen F (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M (2000) Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220–5225

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  CAS  PubMed  Google Scholar 

  • Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616

    Article  CAS  Google Scholar 

  • Martinkova L, Patakova-Juzlova P, Kren V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24

    Article  CAS  PubMed  Google Scholar 

  • Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181

    Article  CAS  PubMed  Google Scholar 

  • Shi Y-C, Liao VH-C, Pan TM (2012) Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med 52:109–177

    Article  CAS  PubMed  Google Scholar 

  • Su N-W, Lin Y-L, Lee M-H, Ho C-Y (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem 53:1949–1954

    Article  CAS  PubMed  Google Scholar 

  • Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World J Microbiol Biotechnol 9:85–90

  • Yongsmith B, Thongpradis P, Klinsupa W, Chantrapornchai W, Haruthaithanasan V (2013) Fermentation and quality of yellow pigments from golden brown rice solid culture by a selected Monascus mutant. Appl Microbiol Biotechnol 97:8895–8902

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Xin Y, Guo Y (2009) Study on the fingerprint profile of Monascus products with HPLC-FD, FAD and MS. Food Chem 113:705–711

    Article  CAS  Google Scholar 

  • Zheng Y, Xin Y, Shi X, Guo Y (2010a) Anti-cancer effect of rubropunctatin against human gastric carcinoma cell BGC-823. Appl Microbiol Biotechnol 88:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Xin Y, Shi X, Guo Y (2010b) Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem 58:9523–9528

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Wang J-F, Wu Z-Q, Liang S-Z (2008) Selection of Monascus with high yellow pigment production. Microbiology (China) 35:1909–1914

    CAS  Google Scholar 

  • Zhou B, Wang J, Pu Y, Zhu M, Liu S, Liang S (2009) Optimization of culture medium for yellow pigments production with Monascus anka mutant using response surface methodology. Eur Food Res Technol 228:895–901

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (No: 21276155) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Zhang, X., Wu, Z. et al. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 99, 1173–1180 (2015). https://doi.org/10.1007/s00253-014-6227-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6227-0

Keywords

Navigation