Skip to main content

Advertisement

Log in

Exploring Soil Bacterial Diversity in Relation to Edaphic Physicochemical Properties of High-altitude Wetlands from Argentine Puna

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

High Andean wetlands, particularly those known as vegas or bofedales, are essential conservation ecosystems due to their significant contribution to ecosystem services. The soil microbial communities in these ecosystems play a crucial role in fundamental processes such as decomposition and nutrient cycling, sustaining life in the region. However, at present, these microbial communities are poorly understood. In order to contribute to this knowledge, we aimed to characterize and compare the microbial communities from soils of seven Argentine Puna vegas and to analyze their association with soil physicochemical characteristics. Proteobacteria (Gamma and Alphaproteobacteria) was the dominant phylum across all vegas, followed in abundance by Actinobacteriota, Desulfobacterota, and Chloroflexi. Furthermore, the abundance of specific bacterial families and genera varied significantly between the vegas; some of them can be associated with plant growth-promoting bacteria such as Rhodomicrobium in La Quebradita and Quebrada del Diablo, Bacillus in Antofalla and Las Quinuas. Laguna Negra showed no shared ASVs with abundance in genera such as Sphingomonas and Pseudonocardia. The studied vegas also differed in their soil physicochemical properties; however, associations between the composition of microbial communities with the edaphic parameters measured were not found. These results suggest that other environmental factors (e.g., geographic, climatic, and plant communities’ characteristics) could determine soil microbial diversity patterns. Further investigations are needed to be focused on understanding the composition and function of microorganisms in the soil associated with specific vegetation types in these high-altitude wetlands, which will provide valuable insights into the ecological dynamics of these ecosystems for conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The sequences generated during the current study are available at NCBI under BioProject ID: PRJNA982741. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Finlayson CM, Davidson NC, Spiers AG (1999) Global review of wetland resources and priorities for wetland inventory. Ramsar Convention Bureau, Gland, Switzerland

    Google Scholar 

  2. MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human wellbeing: wetlands and water synthesis. World Resources Institute, Washington, DC, p 80

    Google Scholar 

  3. Ramsar Convention Secretariat. (2010) Guidelines for management planning for wetlands of high altitude. Ramsar Handbooks for the Wise Use of Wetlands, 4th edition, vol. 11. Ramsar Convention Secretariat, Gland, Switzerland.

  4. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. https://doi.org/10.1029/2008JD011021

    Article  Google Scholar 

  5. Izquierdo AE, Aragon R, Navarro CJ, Casagrandra E (2018) Humedales de la Puna: principales proveedores de servicios ecosistémicos de la región. In: Grau HR, Babot J, Izquierdo AE, Grau A, (Eds). La Puna Argentina: naturaleza y cultura. Serie Conservación de la Naturaleza 24. Tucumán, Argentina, pp 96–111. https://www.lillo.org.ar/revis/cnaturaleza/2018-scn-v24.pdf (Accessed 21 June 2023)

  6. Squeo FA, Warner BG, Aravena R, Espinoza D (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Nat 79:245–255

    Article  Google Scholar 

  7. Maldonado-Fonkén M (2014) An introduction to the bofedales of the Peruvian High Andes. Mires and Peat, 15: Art 5. (Online: http://www.mires-and-peat.net/pages/volumes/map15/map1505.php ). Accessed 18 Nov 2023

  8. Izquierdo AE, Foguet J, Grau HR (2015) Mapping and spatial characterization of Argentine High Andean peatbogs. Wetlands Ecol Manage 23:963–976. https://doi.org/10.1007/s11273-015-9433-3

    Article  Google Scholar 

  9. Chiappero MF, Vaieretti MV, Izquierdo AE (2021) A baseline soil survey of two peatlands associated with a lithium-rich salt flat in the Argentine Puna: physico-chemical characteristics, carbon storage and biota. Mires and Peat 27:13. https://doi.org/10.19189/MaP.2020.OMB.StA.2126

  10. Benavides JC, Vitt DH, Cooper DJ (2023) The high-elevation peatlands of the northern Andes. Colombia. Plants 12(4):955. https://doi.org/10.3390/plants12040955

    Article  CAS  PubMed  Google Scholar 

  11. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583. https://doi.org/10.1073/pnas.95.12.6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459(7244):193–199. https://doi.org/10.1038/nature08058

    Article  CAS  PubMed  Google Scholar 

  13. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  14. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  15. Poria V, Dębiec-Andrzejewska K, Fiodor A, Lyzohub M, Ajijah N, Singh S, Pranaw K (2022) Plant growth-promoting bacteria (PGPB) integrated phytotechnology: a sustainable approach for remediation of marginal lands. Front Plant Sci 13:999866. https://doi.org/10.3389/fpls.2022.999866

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coleman DC, Callaham M, Crossley JDA (2017) Fundamentals of soil ecology, 3rd edn. Academic Press, London

  17. Hamman ST, Burke IC, Stromberger ME (2007) Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol Biochem 39:1703–1711. https://doi.org/10.1016/j.soilbio.2007.01.018

    Article  CAS  Google Scholar 

  18. Pasternak Z, Al-Ashhab A, Gatica J, Gafny R, Avraham S, Minz D, Gillor O, Jurkevitch E (2013) Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions. PLoS ONE 8(7):e69705. https://doi.org/10.1371/journal.pone.0069705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mors AR, Gomez FJ, Astini RA, Mlewski EC, Gérard E (2022) Physico-chemical and biological controls on fluids and carbonate chemistry in a travertine system in the high Andes of Northwestern Argentina. Sediment Geol 439:106214. https://doi.org/10.1016/j.sedgeo.2022.106214

    Article  CAS  Google Scholar 

  20. Albarracín VH, Kurth D, Ordoñez OF, Belfiore C, Luccini E, Salum GM, Piacentini RD, Farías ME (2015) High-up: a remote reservoir of microbial extremophiles in Central Andean wetlands. Front Microbiol 6:1404. https://doi.org/10.3389/fmicb.2015.01404

  21. Mlewski EC, Pisapia C, Gomez F, Lecourt L, Rueda ES, Benzerara K, Ménez B, Borensztajn S, Jamme F, Réfrégiers M et al (2018) Characterization of pustular mats and related rivularia-rich laminations in oncoids from the Laguna Negra Lake (Argentina). Front Microbiol 9:996. https://doi.org/10.3389/fmicb.2018.00996

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vignale FA, Lencina AI, Stepanenko TM, Soria MN, Saona Acosta L, Kurth D, Guzmán D, Foster JS, Poiré DG, Villafañe PG, Albarracín VH, Contreras M, Farías ME (2022) Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the Central Andes. Microb Ecol 83:1–17. https://doi.org/10.1007/s00248-021-01725-8

    Article  CAS  PubMed  Google Scholar 

  23. Vignale FA, Kurth D, Lencina AI, Poiré DG, Chihuailaf E, Muñoz-Herrera NC, Novoa F, Contreras M, Turjanski AG, Farias ME (2021) Geobiology of Andean microbial ecosystems discovered in Salar de Atacama. Chile - Front Microbiol 12:762076. https://doi.org/10.3389/fmicb.2021.762076

    Article  PubMed  Google Scholar 

  24. Boidi FJ, Mlewski EC, Fernández GC, Flores MR, Gérard E, Farias ME, Gómez FJ (2022) Community vertical composition of the Laguna Negra hypersaline microbial mat, Puna Region (Argentinean Andes). Biology 11:831. https://doi.org/10.3390/biology11060831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B, Goodfellow M (2018) High altitude, hyper-arid soils of the Central-Andes harbour mega-diverse communities of actinobacteria. Extremophiles 22:47–57. https://doi.org/10.1007/s00792-017-0976-5

    Article  PubMed  Google Scholar 

  26. Maza F, Maldonado J, Vásquez-Dean J, Mandakovic D et al (2019) Soil bacterial communities from the Chilean Andean highlands: taxonomic composition and culturability. Front Bioeng Biotechnol 7:10. https://doi.org/10.3389/fbioe.2019.00010

  27. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest-elevation (> 6000 masl) mineral soils of the Atacama region. J Geophys Res: Biogeosci 117:G2. https://doi.org/10.1029/2012JG001961

    Article  CAS  Google Scholar 

  28. Solon AJ, Vimercati L, Darcy JL, Arán P, Porazinska D, Dorador C, Farias ME, Schmidt SK (2018) Microbial communities of high-elevation fumaroles, penitentes, and dry tephra “soils” of the Puna de Atacama volcanic zone. Microb Ecol 76:340–351. https://doi.org/10.1007/s00248-017-1129-1

    Article  CAS  PubMed  Google Scholar 

  29. Mandakovic D, Aguado-Norese C, García-Jiménez B, Hodar C, Maldonado JE, Gaete A, Latorre M, Wilkinson MD, Gutiérrez RA, Cavieres LA, Medina J, Cambiazo V, Gonzalez M (2023) Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert. Environ Microbiome 18(1):1–17. https://doi.org/10.1186/s40793-023-00486-w

    Article  Google Scholar 

  30. Belfiore C, Fernandez A, Santos AP, Contreras M, Farías ME (2018) Characterization and comparison of microbial soil diversity in two Andean peatland in different state of conservation? Vega Tocorpuri. J Geosci Environ Protect 06:194–210. https://doi.org/10.4236/gep.2018.64012

    Article  Google Scholar 

  31. Ramos-Tapia I, Nuñez R, Salinas C, Salinas P, Soto J, Paneque M (2022) Study of wetland soils of the Salar de Atacama with different azonal vegetative formations reveals changes in the microbiota associated with hygrophile plant type on the soil surface. Microbiol Spectr 10:e0053322. https://doi.org/10.1128/spectrum.00533-22

    Article  CAS  PubMed  Google Scholar 

  32. Izquierdo AE, Blundo CM, Carilla J, Foguet J, Navarro CJ, Casagranda E, Chiappero MF, Vaieretti MV (2022) Floristic types of high Andean wetlands from NW Argentina and their remote-sensed characterization at a regional scale. Appl Veg Sci 25:1–12. https://doi.org/10.1111/avsc.12658

    Article  Google Scholar 

  33. Reboratti C (2006) Situación Ambiental en las Ecorregiones Puna y Altos Andes. In: Brown A, Martinez Ortiz U, Acerbi M, Corcuera J (eds) La Situación Ambiental Argentina 2005, Fundación Vida Silvestre Argentina. Buenos Aires, Argentina

    Google Scholar 

  34. Will C, Thürmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 76(20):6751–6759. https://doi.org/10.1128/AEM.01063-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H, Li X, Li X, Li F, Su Z, Zhang H (2021) Community composition and co-occurrence patterns of diazotrophs along a soil profile in paddy fields of three soil types in China. Microb Ecol 82:961–970. https://doi.org/10.1007/s00248-021-01716-9

    Article  CAS  PubMed  Google Scholar 

  36. Aguado-Norese C, Cárdenas V, Gaete A, Mandakovic D, Vasquez-Dean J, Hodar C, Pfeiffer M, Gonzalez M (2023) Topsoil and subsoil bacterial community assemblies across different drainage conditions in a mountain environment. Biol Res 56(1):1–15. https://doi.org/10.1186/s40659-023-00445-2

    Article  CAS  Google Scholar 

  37. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nuclei Acids Res 41(1):e1. https://doi.org/10.1093/nar/gks808

  38. Callahan B, McMurdie P, Rosen M, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB et al (2018) Ranacapa: an R package and shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Res 7:1734. https://doi.org/10.12688/f1000research.16680.1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Glo FO et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  41. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16:951–963. https://doi.org/10.1111/ele.12141

    Article  PubMed  Google Scholar 

  43. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. An S, Couteau C, Luo F, Neveu J, DuBow MS (2013) Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microb Ecol 66:850–860. https://doi.org/10.1007/s00248-013-0276-2

    Article  PubMed  Google Scholar 

  46. Farias ME, Rasuk MC, Gallagher KL, Contreras M, Kurth D, Fernandez AB, Poiré D, Novoa F, Visscher PT (2017) Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama. Chile PLoS One 12:e0186867. https://doi.org/10.1371/journal.pone.0186867

    Article  CAS  PubMed  Google Scholar 

  47. Roldán DM, Carrizo D, Sánchez-García L, Menes RJ (2022) Diversity and effect of increasing temperature on the activity of methanotrophs in sediments of Fildes Peninsula freshwater lakes, King George Island. Antartica Front Microbiol 13:822552. https://doi.org/10.3389/fmicb.2022.822552

    Article  Google Scholar 

  48. Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glöckner FO, Harder J (2013) Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics 9:51–61. https://doi.org/10.1016/j.margen.2012.12.001

    Article  PubMed  Google Scholar 

  49. Muwawa EM, Obieze CC, Makonde HM, Jefwa JM, Kahindi JHP, Khasa DP (2021) 16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay. Kenya PLoS ONE 16(3):e0248485. https://doi.org/10.1371/journal.pone.0248485

    Article  CAS  PubMed  Google Scholar 

  50. Ortiz-Cornejo NL, Romero-Salas EA, Navarro-Noya YE, González-Zúñiga JC, Ramirez-Villanueva DA, Vásquez-Murrieta MS et al (2017) Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Appl Soil Ecol 119:417–427. https://doi.org/10.1016/j.apsoil.2017.07.014

    Article  Google Scholar 

  51. Lv X, Yu J, Fu Y, Ma B, Qu F, Ning K, Wu H (2014) A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci World J 2014:437684. https://doi.org/10.1155/2014/437684

    Article  Google Scholar 

  52. Prosser JI, Head IM, Stein LY (2014) The family Nitrosomonadaceae. In: DeLong et al. (eds) The prokaryotes: alphaproteobacteria and beta-proteobacteria. Springer, Berlin/Heidelberg, pp 901–918

  53. Marcondes de Souza J, Carareto Alves LM, de Mello Varani A, de Macedo Lemos EG (2014) The family bradyrhizobiaceae. In: Rosenberg EF, DeLong S, Lory E, Stackebrandt, Thompson F (eds) The Prokaryotes. Springer, Berlin, pp 135–154

  54. Hiraishi A, Imhoff J (2015) Rhodoplanes. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Rainey FA, Whitman WB (eds) Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc., pp 1–12. https://doi.org/10.1002/9781118960608.gbm00826.pub2

  55. Asaf S, Numan M, Khan AL, Al-Harrasi A (2020) Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 40:138–152. https://doi.org/10.1080/07388551.2019.1709793

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Acuña JJ, Inostroza NG, Duran P, Mora ML, Sadowsky MJ, Jorquera MA (2020) Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants. Front Microbiol 11:1036. https://doi.org/10.3389/fmicb.2020.01036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Riahi HS, Heidarieh P, Fatahi-Bafghi M (2022) Genus Pseudonocardia: what we know about its biological properties, abilities and current application in biotechnology. J Appl Microbiol 132:890–906. https://doi.org/10.1111/jam.15271

    Article  CAS  PubMed  Google Scholar 

  58. Miyamoto KT, Komatsu M, Ikeda H (2014) Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl Environ Microbiol 80:5028–5036. https://doi.org/10.1128/AEM.00727-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dobrzyński J, Jakubowska Z, Dybek B (2022) Potential of Bacillus pumilus to directly promote plant growth. Front Microbiol 21:1069053. https://doi.org/10.3389/fmicb.2022.1069053

    Article  Google Scholar 

  60. Rasuk MC, Fernández AB, Kurth D, Contreras M, Novoa F, Poiré D, Farías ME (2016) Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb Ecol 71:44–56. https://doi.org/10.1007/s00248-015-0649-9

    Article  CAS  PubMed  Google Scholar 

  61. Fernández GF, Lecomte K, Vignoni P, Soto Rueda E, Coria SH, Lirio JM, Mlewski EC (2022) Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica). Polar Biol 45:405–418. https://doi.org/10.1007/s00300-021-02997-z

    Article  Google Scholar 

  62. Wang Y, Ma L, Liu Z, Chen J, Song H, Wang J, Cui H, Yang Z, Xiao S, Liu K, An L, Chen S (2022) Microbial interactions play an important role in regulating the effects of plant species on soil bacterial diversity. Front Microbiol 13:984200. https://doi.org/10.3389/fmicb.2022.984200

    Article  PubMed  PubMed Central  Google Scholar 

  63. Naz B, Liu Z, Malard LA, Ali I, Song H, Wang Y, Li X, Usman M, Ali I, Liu K, An L, Xiao S, Chen S (2023) Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Front Microbiol 14:1130321. https://doi.org/10.3389/fmicb.2023.1130321

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ECM would like to thank Dr. Fernando Gomez for the field assistance in Laguna Negra, Dr. Laura Borgnino for the chemical analysis, and finally, Dr. Guillermo Fernandez for enrichment suggestions on results analysis.

Funding

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica FONCYT (Grant numbers PICT2018-04228 and PICT 2018–4129).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s development. Andrea E. Izquierdo and Cecilia Mlewski contributed to the study’s conception and design. Material preparation and data collection were performed by Cecilia Mlewski, M. E. Farias, Mariana Soria, and Luis Saona. Analyses were performed by Cecilia Mlewski, Luis Saona, M. Fernanda Chiappero, and Andrea E. Izquierdo. Andrea E. Izquierdo and Cecilia Mlewski wrote the first draft of the manuscript. Flavia Boidi and M. Victoria Vaieretti contributed particularly to the following drafts, and all authors commented on successive versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrea E. Izquierdo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

248_2023_2316_MOESM1_ESM.tif

Supplementary file1 (TIF 8196 KB) SI_Figure S1: Rarefaction curves obtained by multiple repeated sub-sampling (1000 times).

248_2023_2316_MOESM2_ESM.tif

Supplementary file2 (TIF 5225 KB) SI_Figure S2: Relative Abundance (%) of the most abundant bacterial families (a) and genera (b) from the vegas’ soil microbial communities.

248_2023_2316_MOESM3_ESM.tif

Supplementary file3 (TIF 5187 KB) SI_Figure S3: Pie charts depicting the taxonomic composition at the Class level of the ASVs shared by each group of vegas. Group a: Botijuela, Antofalla, and Las Quinuas; Group b: Quebrada del Diablo, La Quebradita, and Loro Huasi; and Laguna Negra as a standalone group (corresponding to Group c).

Supplementary file4 (DOCX 11 KB)

Supplementary file5 (XLSX 1480 KB)

Supplementary file6 (XLSX 9 KB)

Supplementary file7 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlewski, E.C., Saona, L.A., Boidi, F.J. et al. Exploring Soil Bacterial Diversity in Relation to Edaphic Physicochemical Properties of High-altitude Wetlands from Argentine Puna. Microb Ecol 87, 6 (2024). https://doi.org/10.1007/s00248-023-02316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00248-023-02316-5

Keywords

Navigation