Skip to main content

Advertisement

Log in

The Use of Raw Poultry Waste as Soil Amendment Under Field Conditions Caused a Loss of Bacterial Genetic Diversity Together with an Increment of Eutrophic Risk and Phytotoxic Effects

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Poultry waste has been used as fertilizer to avoid soil degradation caused by the long-term application of chemical fertilizer. However, few studies have evaluated field conditions where livestock wastes have been used for extended periods of time. In this study, physicochemical parameters, metabarcoding of the 16S rRNA gene, and ecotoxicity indexes were used for the characterization of chicken manure and poultry litter to examine the effect of their application to agricultural soils for 10 years. Poultry wastes showed high concentrations of nutrients and increased electrical conductivity leading to phytotoxic effects on seeds. The bacterial communities were dominated by typical members of the gastrointestinal tract, noting the presence of pathogenic bacteria. Soils subjected to poultry manure applications showed statistically higher values of total and extractable phosphorous, increasing the risk of eutrophication. Moreover, while the soil bacterial community remained dominated by the ones related to the biogeochemical cycles of nutrients and plant growth promotion, losses of alpha diversity were observed on treated soils. Altogether, our work would contribute to understand the effects of common local agricultural practices and support the adoption of the waste treatment process in compliance with environmental sustainability guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The raw sequences of the 16S rRNA gene reported in this article have been deposited in the NCBI Short Read Archive and are accessible there under accession number PRJNA689563.

References

  1. Simonetti E, Pin Viso N, Montecchia M et al (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiol Res. https://doi.org/10.1016/j.micres.2015.07.004

    Article  PubMed  Google Scholar 

  2. Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86. https://doi.org/10.1007/BF02183056

    Article  CAS  Google Scholar 

  3. Yin C, Jones KL, Peterson DE et al (2010) Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol Biochem 42:2111–2118. https://doi.org/10.1016/j.soilbio.2010.08.006

    Article  CAS  Google Scholar 

  4. Wongkiew S, Chaikaew P, Takrattanasaran N, Khamkajorn T (2022) Evaluation of nutrient characteristics and bacterial community in agricultural soil groups for sustainable land management. Sci Rep 12.https://doi.org/10.1038/s41598-022-09818-1

  5. Sun R, Zhang XX, Guo X et al (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18. https://doi.org/10.1016/j.soilbio.2015.05.007

    Article  CAS  Google Scholar 

  6. Urra J, Alkorta I, Lanzén A et al (2019) The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Appl Soil Ecol 135:73–84. https://doi.org/10.1016/j.apsoil.2018.11.005

    Article  Google Scholar 

  7. Hernández T, Chocano C, Moreno JL, García C (2016) Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops-Effects on soil and plant. Soil Tillage Res 160:14–22. https://doi.org/10.1016/j.still.2016.02.005

    Article  Google Scholar 

  8. Das S, Jeong ST, Das S, Kim PJ (2017) Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Front Microbiol 8:1702. https://doi.org/10.3389/fmicb.2017.01702

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pizarro MD, Céccoli G, Muñoz FF et al (2019) Use of raw and composted poultry litter in lettuce produced under field conditions: microbiological quality and safety assessment. Poult Sci 98:2608–2614. https://doi.org/10.3382/ps/pez005

    Article  CAS  PubMed  Google Scholar 

  10. Rizzo PF, Bres PA, Young BJ et al (2020) Temporal variation of physico-chemical, microbiological, and parasitological properties of poultry manure from two egg production systems. J Mater Cycles Waste Manag 22:1140–1151. https://doi.org/10.1007/s10163-020-01008-3

    Article  Google Scholar 

  11. Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nature 5:384–392. https://doi.org/10.1038/nrmicro1643

    Article  CAS  Google Scholar 

  12. Burkholder JA, Libra B, Weyer P et al (2007) Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Perspect 115:308–312. https://doi.org/10.1289/ehp.8839

    Article  CAS  PubMed  Google Scholar 

  13. Hu Y, Cheng H, Tao S (2017) Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ Int 107:111–130. https://doi.org/10.1016/j.envint.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  14. Young BJ, Rizzo PF, Riera NI et al (2016) Development of phytotoxicity indexes and their correlation with ecotoxicological, stability and physicochemical parameters during passive composting of poultry manure. Waste Manag 54:101–109. https://doi.org/10.1016/j.wasman.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-NRCS, Washington, DC, pp 338

  16. Plan Mapa de Suelos, Convenio INTA-Gobierno de la provincia de Entre Ríos (1998) Carta de Suelos de la República Argentina, Departamento Paraná, Provincia de Entre Ríos. Acuerdo Complementario del Convenio INTA - Gobierno de Entre Ríos, EEA Paraná, Serie Relevamiento de Recursos Naturales Nº 20, pp 266

  17. USDA USD of A, USCC USCC (2001) Test methods for the examination of composting and compost. In: Thomson W (ed) The composting council research and education foundation. Holbrook, New York, pp 03.09.1–03.09.4

  18. Iannotti DA, Pang T, Toth BL et al (1993) A quantitative respirometric method for monitoring compost stability. Compost Sci Util 1:52–65. https://doi.org/10.1080/1065657X.1993.10757890

    Article  Google Scholar 

  19. SAGyP, AACS (2004) SAMLA. Recopilación de técnicas de laboratorio. Sistema de apoyo metodológico a los laboratorios de análisis de suelos, agua, vegetales y enmiendas orgánicas. CD-ROM format

  20. Alvarenga P, Palma P, Gonçalves AP et al (2007) Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environ Int 33:505–513. https://doi.org/10.1016/j.envint.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  21. Zucconi F, Pera A, Forte M, De Bertoldi M (1981) Evaluating toxicity of immature compost. Biocycle 22:54–57

    Google Scholar 

  22. Young BJ, Riera NI, Beily ME et al (2012) Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicol Environ Saf 76:182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019

    Article  CAS  PubMed  Google Scholar 

  23. Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93:249–256. https://doi.org/10.1016/S0269-7491(96)00052-8

    Article  CAS  PubMed  Google Scholar 

  24. Lange V, Böhme I, Hofmann J et al (2014) Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15.https://doi.org/10.1186/1471-2164-15-63

  25. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nMeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Rienzo JA, Casanoves F, Balzarini MG et al (2016) Infostat statistical software package version 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  30. Mandal S, Treuren W Van, White RA et al (2015) Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 26.https://doi.org/10.3402/mehd.v26.27663

  31. Rizzo PF, Della TV, Riera NI et al (2013) Co-composting of poultry manure with other agricultural wastes: process performance and compost horticultural use. J Mater Cycles Waste Manag 17:42–50. https://doi.org/10.1007/s10163-013-0221-y

    Article  CAS  Google Scholar 

  32. SCyMA (2019) Resolution 19/19 - Technical standard for the agricultural application of digestate from anaerobic digestion plants. Secretariat of Environmental Control and Monitoring, Argentina (in Spanish)

  33. SCyMA, SENASA (2019) Resolution 1/19 - Regulatory framework for the production, registration and application of compost. Secretariat of Environmental Control and Monitoring, Argentina (in Spanish)

  34. Ravindran B, Mupambwa HA, Silwana S, Mnkeni PNS (2017) Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon 3:e00493. https://doi.org/10.1016/j.heliyon.2017.e00493

    Article  PubMed  Google Scholar 

  35. Mufwanzala N, Dikinya O (2010) Impact of poultry manure and its associated salinity on the growth and yield of spinach (Spinacea oleracea) and carrot (Daucus carota). Int J Agric Biol 12:489–494. 10–062/MFA/2010/12–4–489–494

  36. Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci 2019.https://doi.org/10.1155/2019/5794869

  37. Ashworth AJ, Chastain JP, Moore PA (2020) Nutrient characteristics of poultry manure and litter. Anim Manure Prod Charact Environ Concerns Manag:63–87. https://doi.org/10.2134/asaspecpub67.c5

  38. Komilis DP, Tziouvaras IS (2009) A statistical analysis to assess the maturity and stability of six composts. Waste Manag 29:1504–1513. https://doi.org/10.1016/j.wasman.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  39. Bres P, Beily ME, Young BJ et al (2018) Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: a bench scale study. Waste Manag 82:276–284. https://doi.org/10.1016/j.wasman.2018.10.041

    Article  CAS  PubMed  Google Scholar 

  40. Bittsánszky A, Pilinszky K, Gyulai G, Komives T (2015) Overcoming ammonium toxicity. Plant Sci 231:184–190. https://doi.org/10.1016/j.plantsci.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  41. Mutungwazi A, Ijoma GN, Ogola HJO, Matambo TS (2022) Physico-chemical and metagenomic profile analyses of animal manures routinely used as inocula in anaerobic digestion for biogas production. Microorganisms 10.https://doi.org/10.3390/microorganisms10040671

  42. Bindari YR, Moore RJ, Van TTH et al (2021) Microbial communities of poultry house dust, excreta and litter are partially representative of microbiota of chicken caecum and ileum. PLoS ONE 16:1–17. https://doi.org/10.1371/journal.pone.0255633

    Article  CAS  Google Scholar 

  43. Rychlik I (2020) Composition and function of chicken gut microbiota. Animals 10.https://doi.org/10.3390/ani10010103

  44. Yang Q, Ren S, Niu T et al (2013) Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables. Environ Sci Pollut Res 21:1231–1241. https://doi.org/10.1007/s11356-013-1994-1

    Article  CAS  Google Scholar 

  45. Dumas MD, Polson SW, Ritter D et al (2011) Impacts of poultry house environment on poultry litter bacterial community composition. PLoS ONE. https://doi.org/10.1371/journal.pone.0024785

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621. https://doi.org/10.1128/CMR.00008-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402. https://doi.org/10.1016/S0168-6445(00)00031-0

    Article  CAS  PubMed  Google Scholar 

  48. van Bruggen AHC, Goss EM, Havelaar A et al (2019) One health - cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci Total Environ 664:927–937. https://doi.org/10.1016/j.scitotenv.2019.02.091

    Article  CAS  PubMed  Google Scholar 

  49. Rizzo PF, Young BJ, Pin Viso N et al (2022) Integral approach for the evaluation of poultry manure, compost, and digestate: amendment characterization, mineralization, and effects on soil and intensive crops. Waste Manag 139:124–135. https://doi.org/10.1016/j.wasman.2021.12.017

    Article  CAS  PubMed  Google Scholar 

  50. Waldrip HM, He Z, Erich MS (2011) Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biol Fertil Soils 47:407–418. https://doi.org/10.1007/s00374-011-0546-4

    Article  Google Scholar 

  51. Oladipupo AJ, Alade AA, Adewuyi S et al (2020) Soil phosphorus fractions, reaction, and conductivity in some southwestern Nigerian soils as affected by animal manure mixtures. Commun Soil Sci Plant Anal 51:2616–2632. https://doi.org/10.1080/00103624.2020.1845362

    Article  CAS  Google Scholar 

  52. Heckrath G, Brookes PC, Poulton PR, Goulding KWT (1995) Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment. J Environ Qual 24:904–910. https://doi.org/10.2134/jeq1995.00472425002400050018x

    Article  CAS  Google Scholar 

  53. Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095

    Article  CAS  PubMed  Google Scholar 

  54. Austin NR, Prendergast JB, Collins MD (1996) Phosphorus losses in irrigation runoff from fertilized pasture. J Environ Qual 25:63–68. https://doi.org/10.2134/jeq1996.00472425002500010008x

    Article  CAS  Google Scholar 

  55. Sasal MC, Demonte L, Cislaghi A et al (2015) Glyphosate loss by runoff and its relationship with phosphorus fertilization. J Agric Food Chem 63:4444–4448. https://doi.org/10.1021/jf505533r

    Article  CAS  PubMed  Google Scholar 

  56. Huang Z, Zhao F, Li Y et al (2017) Variations in the bacterial community compositions at different sites in the tomb of Emperor Yang of the Sui Dynasty. Microbiol Res 196:26–33. https://doi.org/10.1016/j.micres.2016.12.004

    Article  PubMed  Google Scholar 

  57. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767. https://doi.org/10.1093/aob/mct048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barka EA, Vatsa P, Sanchez L et al (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/mmbr.00044-16

    Article  PubMed  Google Scholar 

  59. Manteca A, Sanchez J (2009) Streptomyces development in colonies and soils. Appl Environ Microbiol 75:2920–2924. https://doi.org/10.1128/AEM.02288-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Navarrete AA, Venturini AM, Meyer KM et al (2015) Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon. Front Microbiol 6:1443. https://doi.org/10.3389/fmicb.2015.01443

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hanada S, Sekiguchi Y (2014) The phylum Gemmatimonadetes. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: other major lineages of bacteria and the archaea, pp 1–1028. https://doi.org/10.1007/978-3-642-38954-2

  62. Girvan MS, Campbell CD, Killham K et al (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313. https://doi.org/10.1111/j.1462-2920.2005.00695.x

    Article  CAS  PubMed  Google Scholar 

  63. Wagg C, Schlaeppi K, Banerjee S et al (2019) Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:4841. https://doi.org/10.1038/s41467-019-12798-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Celestina C, Sale PWG, Hunt JR et al (2019) A single application of fertiliser or manure to a cropping field has limited long-term effects on soil microbial communities. Soil Res 57:228–238. https://doi.org/10.1071/SR18215

    Article  Google Scholar 

  65. Semenov M V., Krasnov GS, Semenov VM et al (2021) Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? J Environ Manage 294.https://doi.org/10.1016/j.jenvman.2021.113018

  66. de Beer H, Hugo CJ, Jooste PJ et al (2005) Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55:2149–2153. https://doi.org/10.1099/ijs.0.63746-0

    Article  CAS  PubMed  Google Scholar 

  67. Poirier S, Bize A, Bureau C et al (2016) Community shifts within anaerobic digestion microbiota facing phenol inhibition: towards early warning microbial indicators? Water Res 100:296–305. https://doi.org/10.1016/j.watres.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  68. Vreeland RH (1992) The family Halomonadaceae. In: Balows A, Trüper HG, Dworkin M et al (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer New York, New York, pp 3181–3188

    Google Scholar 

  69. Biebl H, Pfennig N (1981) Isolation of members of the family Rhodospirillaceae. In: Starr MP, Stolp H, Trüper HG et al (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, Berlin, pp 267–273

    Chapter  Google Scholar 

  70. Agersø Y, Sandvang D (2005) Class 1 integrons and tetracycline resistance genes in isolated from pigsties and manured soil. Appl Environ Microbiol 71:7941–7947. https://doi.org/10.1128/AEM.71.12.7941

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mao H, Wang K, Wang Z et al (2020) Metabolic function, trophic mode, organics degradation ability and influence factor of bacterial and fungal communities in chicken manure composting. Bioresour Technol 302:122883. https://doi.org/10.1016/j.biortech.2020.122883

    Article  CAS  PubMed  Google Scholar 

  72. Videnska P, Rahman MM, Faldynova M et al (2014) Characterization of egg laying hen and broiler fecal microbiota in poultry farms in Croatia, Czech Republic, Hungary and Slovenia. PLoS One 9:e110076. https://doi.org/10.1371/journal.pone.0110076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coleri Cihan A, Karaca B, Ozel BP, Kilic T (2017) Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family. World J Microbiol Biotechnol 33:1–13. https://doi.org/10.1007/s11274-017-2271-0

    Article  CAS  Google Scholar 

  74. Wang X, Li Q, Sui J et al (2019) Isolation and characterization of antagonistic bacteria paenibacillus jamilae HS-26 and their effects on plant growth. Biomed Res Int 2019.https://doi.org/10.1155/2019/3638926

  75. Ouyang WY, Su JQ, Richnow HH, Adrian L (2019) Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. Environ Int 126:118–126. https://doi.org/10.1016/j.envint.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  76. Luo J, Tao Q, Jupa R et al (2019) Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii. Environ Sci Technol 53:6954–6963. https://doi.org/10.1021/acs.est.9b01093

    Article  CAS  PubMed  Google Scholar 

  77. Whitman WB, Suzuki K (2015) Solirubrobacteraceae. Bergey’s Man Syst Archaea Bact:1–2.https://doi.org/10.1002/9781118960608.fbm00055

  78. Zhang M, Riaz M, Liu B et al (2020) Two-year study of biochar: achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. Sci Total Environ 717:137286. https://doi.org/10.1016/j.scitotenv.2020.137286

    Article  CAS  PubMed  Google Scholar 

  79. Bachar A, Al-Ashhab A, Soares MIM et al (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60:453–461. https://doi.org/10.1007/s00248-010-9727-1

    Article  PubMed  Google Scholar 

  80. León-Sobrino C, Ramond JB, Maggs-Kölling G, Cowan DA (2019) Nutrient acquisition, rather than stress response over diel cycles, drives microbial transcription in a hyper-arid Namib desert soil. Front Microbiol 10:1054. https://doi.org/10.3389/fmicb.2019.01054

    Article  PubMed  PubMed Central  Google Scholar 

  81. Qin M, Shi G, Zhang Q et al (2019) Arbuscular mycorrhizal fungi serve as keystone taxa for revegetation on the Tibetan Plateau. J Basic Microbiol 59:609–620. https://doi.org/10.1002/jobm.201900060

    Article  CAS  PubMed  Google Scholar 

  82. Zhang M, Riaz M, Zhang L et al (2019) Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: more effective on acidic soils. Front Microbiol 10:1321. https://doi.org/10.3389/fmicb.2019.01321

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19. https://doi.org/10.1007/s00792-009-0282-y

    Article  CAS  PubMed  Google Scholar 

  84. Chen L, Li F, Li W et al (2020) Organic amendment mitigates the negative impacts of mineral fertilization on bacterial communities in Shajiang black soil. Appl Soil Ecol 150:103457. https://doi.org/10.1016/j.apsoil.2019.103457

    Article  Google Scholar 

  85. Brewer TE, Handley KM, Carini P et al (2016) Genome reduction in an abundant and ubiquitous soil bacterium “Candidatus Udaeobacter copiosus”. Nat Microbiol 2:16198. https://doi.org/10.1038/nmicrobiol.2016.198

    Article  CAS  PubMed  Google Scholar 

  86. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413. https://doi.org/10.1038/nrmicro2578

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been used computational resources from the Bioinformatics Unit, IABiMo (CICVyA-INTA/CONICET), part of the Consorcio Argentino de Tecnología Genómica (CATG) (PPL Genómica, MINCyT).

Funding

This work was supported by grants from the Universidad Nacional de Hurlingham.

Author information

Authors and Affiliations

Authors

Contributions

Natalia D. Pin Viso: conceptualization, investigation, formal analysis, writing-original draft; Pedro F. Rizzo: conceptualization, investigation, writing-original draft; Brian J. Young: investigation, writing-reviewing, and editing; Emmanuel Gabioud: investigation, resources, writing-reviewing, and editing; Patricia Bres: investigation; Nicolás I. Riera: resources; Lina Merino: investigation, writing-reviewing, and editing; Marisa D. Farber: conceptualization, funding acquisition, supervision, writing-reviewing, and editing; Diana C. Crespo: conceptualization, funding acquisition, supervision.

Corresponding author

Correspondence to Marisa D. Farber.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 238 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pin Viso, N.D., Rizzo, P.F., Young, B.J. et al. The Use of Raw Poultry Waste as Soil Amendment Under Field Conditions Caused a Loss of Bacterial Genetic Diversity Together with an Increment of Eutrophic Risk and Phytotoxic Effects. Microb Ecol 86, 1082–1095 (2023). https://doi.org/10.1007/s00248-022-02119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02119-0

Keywords

Navigation