Skip to main content

Advertisement

Log in

Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The exploration of spatial patterns of abundance and diversity patterns along precipitation gradients has focused for centuries on plants and animals; microbial profiles along such gradients are largely unknown. We studied the effects of soil pH, nutrient concentration, salinity, and water content on bacterial abundance and diversity in soils collected from Mediterranean, semi-arid, and arid sites receiving approximately 400, 300, and 100 mm annual precipitation, respectively. Bacterial diversity was evaluated by terminal restriction fragment length polymorphism and clone library analyses and the patterns obtained varied with the climatic regions. Over 75% of the sequenced clones were unique to their environment, while ∼2% were shared by all sites, yet, the Mediterranean and semi-arid sites had more common clones (∼9%) than either had with the arid site (4.7% and 6%, respectively). The microbial abundance, estimated by phospholipid fatty acids and real-time quantitative PCR assays, was significantly lower in the arid region. Our results indicate that although soil bacterial abundance decreases with precipitation, bacterial diversity is independent of precipitation gradient. Furthermore, community composition was found to be unique to each ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699

    Article  Google Scholar 

  2. Gentry AH (1982) Patterns of neotropical plant-species diversity. Evol Biol 15:1–85

    Google Scholar 

  3. Heaney LR (2001) Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Glob Ecol Biogeogr 10:15–39

    Article  Google Scholar 

  4. McCoy ED (1990) The distribution of insect along elevational gradients. Oikos 58:313–322

    Article  Google Scholar 

  5. Terborgh J (1977) Bird species-diversity on an Andean elevational gradient. Ecology 58:1007–1019

    Article  Google Scholar 

  6. Usher MB, Sier ARJ, Hornung M, Millard P (2006) Understanding biological diversity in soil: the UK's Soil Biodiversity Research Programme. Appl Soil Ecol 33:101–113

    Article  Google Scholar 

  7. Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Article  CAS  PubMed  Google Scholar 

  8. Zhou JZ, Xia BC, Huang H, Palumbo AV, Tiedje JM (2004) Microbial diversity and heterogeneity in sandy subsurface soils. Appl Environ Microbiol 70:1723–1734

    Article  CAS  PubMed  Google Scholar 

  9. Chan OC, Yang XD, Fu Y, Feng ZL, Sha LQ, Casper P, Zou XM (2006) 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiol Ecol 58:247–259

    Article  CAS  PubMed  Google Scholar 

  10. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  Google Scholar 

  11. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507

    Article  PubMed  Google Scholar 

  12. Vishniac HS (2006) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103

    Article  PubMed  Google Scholar 

  13. Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O'Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  CAS  PubMed  Google Scholar 

  14. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  15. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  CAS  PubMed  Google Scholar 

  16. Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  17. Angel R, Soares MIM, Ungar ED, Gillor O (2009) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563

    Article  PubMed  Google Scholar 

  18. Egert M, Friedrich MW (2003) Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl Environ Microbiol 69:2555–2562

    Article  CAS  PubMed  Google Scholar 

  19. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  20. Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb Ecol 53:562–570

    Article  CAS  PubMed  Google Scholar 

  21. Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  CAS  PubMed  Google Scholar 

  22. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    Article  CAS  PubMed  Google Scholar 

  23. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  25. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  CAS  PubMed  Google Scholar 

  26. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  Google Scholar 

  28. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–147

    Google Scholar 

  29. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102

    CAS  PubMed  Google Scholar 

  30. White DC, Ringelberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in Microbial Ecology. Oxford University Press, New York, pp 255–272

    Google Scholar 

  31. SSSA (1996) Methods of soil analysis, Part 3—chemical methods and processes. Soil Science Society of America, Madison

    Google Scholar 

  32. Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  33. Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J 2:901–910

    Article  CAS  PubMed  Google Scholar 

  34. Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol 45:20–28

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed  Google Scholar 

  36. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  37. Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Article  CAS  PubMed  Google Scholar 

  38. Prestel E, Salamitou S, Dubow MS (2008) An examination of the bacteriophages and bacteria of the Namib desert. J Microbiol 46:364–372

    Article  CAS  PubMed  Google Scholar 

  39. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  CAS  PubMed  Google Scholar 

  40. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2007) The prokaryotes: an evolving electronic resource for the microbiology communitybacteria, firmicutes, vol. 3b. Springer, New York

    Google Scholar 

  41. Evenari M, Shanan L, Tadmor N (1982) The Negev: the challenge of a desert. Harvard University Press, Cambridge

    Google Scholar 

  42. Yair A, Danin A (1980) Spatial variations in vegetation as related to the soil moisture regime over an arid limestone hillside, northern Negev, Israel. Oecologia 47:83–88

    Article  Google Scholar 

  43. Danin A, Orshan G (1990) The distribution of raunkiaer life forms in Israel in relation to the environment. J Veg Sci 1:41–48

    Article  Google Scholar 

  44. Danin A, Orshan G, Zohary M (1975) The vegetation of the northern Negev and the Judean desert of Israel. Isr J Bot 24:118–172

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of the Michigan State University (Ribosomal Database Project), and the technical assistance of Rina Myaskovsky and Reuma Arusi. We thank Yael Lubin for allowing the use of unpublished data and for fruitful discussions, and the Israeli LTER (http://lter.bgu.ac.il) for allowing sampling on their sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osnat Gillor.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOC 33 kb)

Supplementary Fig. S1

(DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachar, A., Al-Ashhab, A., Soares, M.I.M. et al. Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient. Microb Ecol 60, 453–461 (2010). https://doi.org/10.1007/s00248-010-9727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9727-1

Keywords

Navigation