Skip to main content
Log in

An Analysis of IS630/Tc1/mariner Transposons in the Genome of a Pacific Oyster, Crassostrea gigas

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Transposable elements represent the DNA fragments capable of increasing their copy number and moving within the genome. Class II mobile elements represents the DNA transposons, which transpose via excision and the subsequent reinsertion at random genomic loci. The increase of their copy number occurs only when the transposition event is coupled with the replication. IS630/Tc1/mariner DNA transposon superfamily is one of the largest and widely distributed among the Class II elements. In this work, we provide a detailed analysis of IS630/Tc1/mariner DNA transposons from the Pacific oyster, Crassostrea gigas. IS630/Tc1/mariner transposons represented in the genome of the Pacific oyster belong to four families, Tc1 (DD34E), mariner (DD34D), pogo (DDxD), and rosa (DD41D). More than a half of IS630/Tc1/mariner elements from C. gigas belong to Tc1 family. Furthermore, Mariner-31_CGi element was shown to represent a new and previously unknown family with DD37E signature. We also discovered the full-size transcripts of eight elements from Tc1, mariner, and pogo families, three of which can, presumably, retain their transposition activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertin CB, Simakov O, Mitros T et al (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Arensburger P, Megy K, Waterhouse RM et al (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88

    Article  CAS  Google Scholar 

  • Bao W, Jurka J (2013a) DNA transposons from the Pacific oyster genome. Repbase Rep 13(1):599–633

    Google Scholar 

  • Bao W, Jurka J (2013b) DNA transposons from the Pacific oyster genome. Repbase Rep 13(3):1415–1426

    Google Scholar 

  • Bao W, Jurka J (2013c) DNA transposons from the Pacific oyster genome. Repbase Rep 13(4):1516–1517

    Google Scholar 

  • Bouallègue M, Filée J, Kharrat I et al (2017) Diversity and evolution of mariner-like elements in aphid genomes. BMC Genom 18:494. https://doi.org/10.1186/s12864-017-3856-6

    Article  Google Scholar 

  • Bryan G, Garza D, Hartl D (1990) Insertion and excision of the transposable element mariner in Drosophila. Genetics 125:103–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capy P, Vitalis R, Langin T et al (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42:359–368

    Article  CAS  Google Scholar 

  • Capy P, Langin T, Higuet D et al (1997) Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? Genetica 100:63–72

    Article  CAS  Google Scholar 

  • Casola C, Hucks D, Feschotte C (2008) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 25:29–41

    Article  CAS  Google Scholar 

  • Chow KC, Tung WL (2000) Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem Biophys Res Commun 270(3):745–748

    Article  CAS  Google Scholar 

  • Clark KJ, Carlson DF, Leaver MJ et al (2009) Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res 37:1239–1247

    Article  CAS  Google Scholar 

  • Claudianos C, Brownlie J, Russell R et al (2002) maT: a clade of transposons intermediate between mariner. and Tc1. Mol Biol Evol 19:2101–2109

    Article  CAS  Google Scholar 

  • Collins J, Forbes E, Anderson P (1989) The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics 121:47–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daboussi MJ, Langin T, Brygoo Y (1992) Fot1, a new family of fungal transposable elements. Mol Gen Genet 232:12–16

    Article  CAS  Google Scholar 

  • de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  Google Scholar 

  • Del Re B, Garoia F, Mesirca P et al (2003) Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat Environ Biophys 42(2):113–118

    Article  CAS  Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91(3):942–946

    Article  CAS  Google Scholar 

  • Dupeyron M, Leclercq S, Cerveau N, Bouchon D, Gilbert C (2014) Horizontal transfer of transposons between and within crustaceans and insects. Mob DNA 5:4

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32:55–65

    Article  CAS  Google Scholar 

  • Fernández-Medina RD, Granzotto A, Ribeiro JM, Carareto CM (2016) Transposition burst of mariner-like elements in the sequenced genome of Rhodnius prolixus. Insect Biochem Mol Biol 69:14–24

    Article  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  CAS  Google Scholar 

  • Finnegan DJ (1992) Transposable elements. Curr Opin Genet Dev 2(6):861–867

    Article  CAS  Google Scholar 

  • Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19:6646

    Article  CAS  Google Scholar 

  • Gomulski LM, Torti C, Bonizzoni M et al (2001) A new basal subfamily of mariner elements in Ceratitis rosa and other tephritid flies. J Mol Evol 53:597–606

    Article  CAS  Google Scholar 

  • Haymer DS, Marsh JL (1986) Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Dev Genet 6:281–291

    Article  CAS  Google Scholar 

  • Henikoff S (1992) Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol 4:382–388

    CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez EM, Fernández-Medina RD, Navarro-Escalante L et al (2017) Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genom 292(3):565–583. https://doi.org/10.1007/s00438-017-1291-7

    Article  CAS  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  CAS  Google Scholar 

  • Jarvik T, Lark KG (1998) Characterization of Soymar1, a mariner element in soybean. Genetics 149:1569–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jurka J (2012) DNA transposons from the Pacific oyster genome. Repbase Rep 12(12):2460–2461

    Google Scholar 

  • Jurka J (2013) DNA transposons from the Pacific oyster genome. Repbase Rep 13(4):1547

    Google Scholar 

  • Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    Article  CAS  Google Scholar 

  • Liu Y, Yang G (2014) Tc1-like transposable elements in plant genomes. Mob DNA 5:17

    Article  CAS  Google Scholar 

  • Mateo L, Gonzalez J (2014) Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins. Genome Biol Evol 6:2008–2016. https://doi.org/10.1093/gbe/evu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesquita RD, Vionette-Amaral RJ, Lowenberger C et al (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 112:14936–14941

    Article  CAS  Google Scholar 

  • Munoz-Lopez M, Siddique A, Bischerour J et al (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Evol 382:567–572

    CAS  Google Scholar 

  • Piacentini L, Fanti L, Specchia V et al (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 123:345–354

    Article  Google Scholar 

  • Puzakov MV, Puzakova LV, Zakharov IK (2017) Diversity and distribution of mobile genetic elements in marine invertebrates genomes. Vavilov J Genet Breed 21(2):269–283. https://doi.org/10.18699/VJ16.16-o

    Article  Google Scholar 

  • Robertson HM (1995) The Tc1-mariner superfamily of transposons in animals. J Insect Physiol 41:99–105

    Article  CAS  Google Scholar 

  • Robertson HM, Asplund ML (1996) Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 26(8–9):945–954

    Article  CAS  Google Scholar 

  • Robertson HM, Lampe DJ (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12:850–862

    CAS  PubMed  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  Google Scholar 

  • Sergeeva EM, Salina EA (2011) Transposable elements and plant genome evolution. Russ J Genet: Appl Res 1(6):565–576. https://doi.org/10.1134/S2079059711060086

    Article  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159(3):1103–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simakov O, Marletaz F, Cho SJ et al (2013) Insights into bilaterian evolution from three spiralian genomes. Nature 493:526–531

    Article  CAS  Google Scholar 

  • Smit AFA, Riggs AD (1996) Tiggers and other DNA transposon fossils in the human genome. Proc Natl Acad Sci USA 93:1443–1448

    Article  CAS  Google Scholar 

  • Strand DJ, McDonald JF (1989) Insertion of a copia element 5′ to the Drosophila melanogaster alcohol dehydrogenase gene (adh) is associated with altered developmental and tissue-specific patterns of expression. Genetics 121(4):787–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Kawashima T, Koyanagi R et al (2012) Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res 19:117–130

    Article  CAS  Google Scholar 

  • Wallau GL, Capy P, Loreto E, Le Rouzic A, Hua-Van A (2016) VHICA, a new method to discriminate between vertical and horizontal transposon transfer: application to the mariner family within Drosophila. Mol Biol Evol 33(4):1094–1109

    Article  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. https://doi.org/10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  • Yoshida MA, Ishikura Y, Moritaki T et al (2011) Genome structure analysis of molluscs revealed whole genome duplication and lineage specific repeat variation. Gene 483:63–71

    Article  CAS  Google Scholar 

  • Zakharenko LP, Zakharov IK, Voloshina MA, Gracheva EM, Romanova OA, Kochieva EZ, Simonova OB, Georgiev P, Golubovsky MD (2000) hobo-induced rearrangements are responsible mutation bursts at the yellow locus in natural population of Drosophila melanogaster. Mol Gen Genet MGG 263(2):335–341

    Article  CAS  Google Scholar 

  • Zakharenko LP, Kovalenko LV, Zakharov IK, Perepelkina MP (2006) The effect of γ-radiation on induction of the hobo element transposition in Drosophila melanogaster. Russ J Genet 42(6):619–622

    Article  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54. https://doi.org/10.1038/nature11413

    Article  CAS  Google Scholar 

  • Zhang HH, Li GY, Xiong XM, Min-Jin Han MJ, Zhang XG, Dai FY (2016a) TRT, a vertebrate and protozoan Tc1-like transposon: current activity and horizontal transfer. Genome Biol Evol 8(9):2994–3005. https://doi.org/10.1093/gbe/evw213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HH, Shen YH, Xiong XM et al (2016b) Identification and evolutionary history of the DD41D transposons in insects. Genes Genom 38:109–117. https://doi.org/10.1007/s13258-015-0356-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Under the support of the Russian Academy of Sciences research Grant No. AAAA-A18-118021490093-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Puzakov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakov, M.V., Puzakova, L.V. & Cheresiz, S.V. An Analysis of IS630/Tc1/mariner Transposons in the Genome of a Pacific Oyster, Crassostrea gigas. J Mol Evol 86, 566–580 (2018). https://doi.org/10.1007/s00239-018-9868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9868-2

Keywords

Navigation