Skip to main content
Log in

Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The coffee berry borer (CBB) Hypothenemus hampei is the most limiting pest of coffee production worldwide. The CBB genome has been recently sequenced; however, information regarding the presence and characteristics of transposable elements (TEs) was not provided. Using systematic searching strategies based on both de novo and homology-based approaches, we present a library of TEs from the draft genome of CBB sequenced by the Colombian Coffee Growers Federation. The library consists of 880 sequences classified as 66% Class I (LTRs: 46%, non-LTRs: 20%) and 34% Class II (DNA transposons: 8%, Helitrons: 16% and MITEs: 10%) elements, including families of the three main LTR (Gypsy, Bel-Pao and Copia) and non-LTR (CR1, Daphne, I/Nimb, Jockey, Kiri, R1, R2 and R4) clades and DNA superfamilies (Tc1-mariner, hAT, Merlin, P, PIF-Harbinger, PiggyBac and Helitron). We propose the existence of novel families: Hypo, belonging to the LTR Gypsy superfamily; Hamp, belonging to non-LTRs; and rosa, belonging to Class II or DNA transposons. Although the rosa clade has been previously described, it was considered to be a basal subfamily of the mariner family. Based on our phylogenetic analysis, including Tc1, mariner, pogo, rosa and Lsra elements from other insects, we propose that rosa and Lsra elements are subfamilies of an independent family of Class II elements termed rosa. The annotations obtained indicate that a low percentage of the assembled CBB genome (approximately 8.2%) consists of TEs. Although these TEs display high diversity, most sequences are degenerate, with few full-length copies of LTR and DNA transposons and several complete and putatively active copies of non-LTR elements. MITEs constitute approximately 50% of the total TEs content, with a high proportion associated with DNA transposons in the Tc1-mariner superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APE:

Apurinic/apyrimidinic endonuclease

BLAST:

Basic local alignment search tool

CBB:

Coffee berry borer

GtRNAdb:

Genomic tRNA Database

GyDB:

Gypsy database

HSP:

High-scoring segment pairs

LINE:

Long interspersed element

LTR:

Long terminal repeat

MITEs:

Miniature inverted–repeat transposable elements

ORFs:

Open reading frames

pHMMs:

Profile hidden Markov models

RNaseH:

Ribonuclease H

RT:

Reverse transcriptase

TEs:

Transposable elements

TIR:

Terminal inverted repeat

TSD:

Target site duplication

WGS:

Whole-genome sequence

References

  • Andreev D, Breilid H, Kirkendall L, Brun LO, ffrench-Constant RH (1998) Lack of nucleotide variability in a beetle pest with extreme inbreeding. Insect Mol Biol 7:197–200

    Article  CAS  PubMed  Google Scholar 

  • Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, Kodira CD, Lobo NF, Mao C, Mayhew G, Michel K, Mori A, Liu N, Naveira H, Nene V, Nguyen N, Pearson MD, Pritham EJ, Puiu D, Qi Y, Ranson H, Ribeiro JM, Roberston HM, Severson DW, Shumway M, Stanke M, Strausberg RL, Sun C, Sutton G, Tu ZJ, Tubio JM, Unger MF, Vanlandingham DL, Vilella AJ, White O, White JR, Wondji CS, Wortman J, Zdobnov EM, Birren B, Christensen BM, Collins FH, Cornel A, Dimopoulos G, Hannick LI, Higgs S, Lanzaro GC, Lawson D, Lee NH, Muskavitch MA, Raikhel AS, Atkinson PW (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benavides P, Vega FE, Romero-Severson J, Bustillo AE, Stuart JJ (2005) Biodiversity and biogeography of an important inbred pest of coffee, coffee berry borer (Coleoptera: Curculionidae: Scolytinae). Ann Entomol Soc Am 98:359–366

    Article  CAS  Google Scholar 

  • Biedler J, Tu Z (2003) Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity. Mol Biol Evol 20:1811–1825

    Article  CAS  PubMed  Google Scholar 

  • Borsa P, Kjellberg F (1996) Secondary sex ratio adjustment in a Pseudo-arrenotokous insect, Hypothenemus hampei (Coleoptera: Scolytidae). CRASP 319:1159–1166

    Google Scholar 

  • Brun LO, Stuart J, Gaudichon V, Aronstein K, French-Constant RH (1995) Functional haplodiploidy: a mechanism for the spread of insecticide resistance in an important international insect pest. Proc Natl Acad Sci USA 92:9861–9865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustillo AE (2006) Una revisión sobre la broca del café, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae), en Colombia. Revista Colombiana de Entomología 32:101–116

    Google Scholar 

  • Capy P, David JR, Hartl DL (1992) Evolution of the transposable element mariner in the Drosophila melanogaster species group. Genetica 86:37–46

    Article  CAS  PubMed  Google Scholar 

  • Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37(Database issue):D93–D97

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Langley CH (1986) The evolution of self-regulated transposition of transposable elements. Genetics 112:359–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AG, Eisen MB (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Copeland CS, Mann VH, Morales ME, Kalinna BH, Brindley PJ (2005) The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol Biol 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Chaux N, Wagner A (2011) BEL/Pao retrotransposons in metazoan genomes. BMC Evol Biol 11:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7:e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G (2013) Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 56:475–486

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Medina RD, Granzotto A, Ribeiro JM, Carareto CM (2016) Transposition burst of mariner-like elements in the sequenced genome of Rhodnius prolixus. Insect Biochem Mol Biol 69:14–24

    Article  PubMed  Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163(2):747–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Flutre T, Duprat E (2011) Considering transposable element diversification in de novo annotation approaches. PLoS One 6:e16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Xiao M, Ren X, Hayward A, Yin J, Wu L, Fu D, Li J (2012) Characterization and functional annotation of nested transposable elements in eukaryotic genomes. Genomics 100:222–230

    Article  CAS  PubMed  Google Scholar 

  • Gauthier N (2010) Multiple cryptic genetic units in Hypothenemus hampei (Coleoptera: Scolytinae): evidence from microsatellite and mitochondrial DNA sequence data. Biol J Linn Soc 101:113–129

    Article  Google Scholar 

  • Gingerich DP, Borsa P, Suckling DM, Brun L-O (1996) Inbreeding in the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) estimated from endosulfan resistance phenotype frequencies. Bull Entomol Res 86:667–674

    Article  Google Scholar 

  • Gomulski LM, Torti C, Bonizzoni M, Moralli D, Raimondi E, Capy P, Gasperi J, Malacrida AR (2001) A new basal subfamily of mariner elements in Ceratitis rosa and other tephritid flies. J Mol Evol 53:597–606

    Article  CAS  PubMed  Google Scholar 

  • Goodwin T, Poulter R (2004) A new group of tyrosine recombinase-encoding retrotransposons. Mol Biol Evol 21:746–759

    Article  CAS  PubMed  Google Scholar 

  • Granzotto A, Lopes FR, Lerat E, Vieira C, Carareto C (2009) The evolutionary dynamics of the Helena retrotransposon revealed by sequenced Drosophila genomes. BMC Evol Biol 9:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickey D (1982) Selfish DNA: a sexually transmitted nuclear parasite. Genetics 101:519–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoen DR, Hickey G, Bourque G, Casacuberta J, Cordaux R, Feschotte C, Fiston-Lavier AS, Hua-Van A, Hubley R, Kapusta A, Lerat E, Maumus F, Pollock DD, Quesneville H, Smit A, Wheeler TJ, Bureau TE, Blanchette M. (2015) A call for benchmarking transposable element annotation methods. Mob DNA 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Infante F, Pérez J, Vega FE (2014) The coffee berry borer: the centenary of a biological invasion in Brazil. Braz J Biol 74:S125–S126

    Article  CAS  PubMed  Google Scholar 

  • Jiang N (2013) Computational methods for identification of DNA transposons. In: Peterson T (ed) Plant transposable elements SE—21, vol 1057. Human Press, pp 289–304. Methods in Molecular Biology

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Tempel S, Jurka J (2009) Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene 448:207–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, Palmquist DL, Jackman SD, Nguyen A, Li M, Henderson H, Janes JK, Zhao Y, Pandoh P, Moore R, Sperling FA, Huber DP, Birol I, Jones SJ, Bohlmann J (2013) Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. BMC Genomics 21(14):198

    Google Scholar 

  • Kidwell MG (1977) Reciprocal differences in female recombination associated with hybrid dysgenesis in Drosophila melanogaster. Genet Res 30:77–88

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements, parasitic DNA, and genome evolution. Evolution (NY) 55:1–24

    Article  Google Scholar 

  • Lampe DJ, Walden KK, Robertson HM (2001) Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol Biol Evol 18:954–961

    Article  CAS  PubMed  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39(Database issue):D70–D74

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805

    Article  CAS  PubMed  Google Scholar 

  • Marinotti O, Cerqueira GC, de Almeida LG, Ferro MI, Loreto EL, Zaha A, Teixeira SM, Wespiser AR, Almeida E Silva A, Schlindwein AD, Pacheco AC, Silva AL, Graveley BR, Walenz BP, Lima Bde A, Ribeiro CA, Nunes-Silva CG, de Carvalho CR, Soares CM, de Menezes CB, Matiolli C, Caffrey D, Araújo DA, de Oliveira DM, Golenbock D, Grisard EC, Fantinatti-Garboggini F, de Carvalho FM, Barcellos FG, Prosdocimi F, May G, Azevedo Junior GM, Guimarães GM, Goldman GH, Padilha IQ, Batista Jda S, Ferro JA, Ribeiro JM, Fietto JL, Dabbas KM, Cerdeira L, Agnez-Lima LF, Brocchi M, de Carvalho MO, Teixeira Mde M, Diniz Maia Mde M, Goldman MH, Cruz Schneider MP, Felipe MS, Hungria M, Nicolás MF, Pereira M, Montes MA, Cantão ME, Vincentz M, Rafael MS, Silverman N, Stoco PH, Souza RC, Vicentini R, Gazzinelli RT, Neves Rde O, Silva R, Astolfi-Filho S, Maciel TE, Urményi TP, Tadei WP, Camargo EP, de Vasconcelos AT (2013) The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res 41:7387–7400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mátés L, Izsvák Z, Ivics Z (2007) Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 8(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, Spieth J, Carvalho AB, Panzera F, Lawson D, Torres AQ, Ribeiro JM, Sorgine MH, Waterhouse RM, Montague MJ, Abad-Franch F, Alves-Bezerra M, Amaral LR, Araujo HM, Araujo RN, Aravind L, Atella GC, Azambuja P, Berni M, Bittencourt-Cunha PR, Braz GR, Calderón-Fernández G, Carareto CM, Christensen MB, Costa IR, Costa SG, Dansa M, Daumas-Filho CR, De-Paula IF, Dias FA, Dimopoulos G, Emrich SJ, Esponda-Behrens N, Fampa P, Fernandez-Medina RD, da Fonseca RN, Fontenele M, Fronick C, Fulton LA, Gandara AC, Garcia ES, Genta FA, Giraldo-Calderón GI, Gomes B, Gondim KC, Granzotto A, Guarneri AA, Guigó R, Harry M, Hughes DS, Jablonka W, Jacquin-Joly E, Juárez MP, Koerich LB, Lange AB, Latorre-Estivalis JM, Lavor A, Lawrence GG, Lazoski C, Lazzari CR, Lopes RR, Lorenzo  MG, Lugon  MD, Majerowicz  D, Marcet  PL, Mariotti  M, Masuda H, Megy  K, Melo  AC, Missirlis  F, Mota T, Noriega  FG, Nouzova  M, Nunes  RD, Oliveira  RL, Oliveira-Silveira  G, Ons  S, Orchard  I, Pagola  L, Paiva-Silva  GO, Pascual  A, Pavan  MG, Pedrini  N, Peixoto  AA, Pereira  MH, Pike  A, Polycarpo  C, Prosdocimi  F, Ribeiro-Rodrigues  R, Robertson  HM, Salerno AP, Salmon  D, Santesmasses  D, Schama  R, Seabra-Junior ES, Silva-Cardoso  L, Silva-Neto  MA, Souza-Gomes  M, Sterkel  M, Taracena  ML, Tojo  M, Tu ZJ, Tubio  JM, Ursic-Bedoya  R, Venancio  TM, Walter-Nuno  AB, Wilson  D, Warren  WC, Wilson  RK, Huebne  E, Dotson  EM, Oliveira  PL (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 112:14936–14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JM, Markov GV (2016) Draft Genome of the Scarab Beetle Oryctes borbonicus on La Réunion Island. Genome Biol Evol 8(7):2093–2105

    Article  PubMed  PubMed Central  Google Scholar 

  • Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VL, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DS, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MK, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O’Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GW, Tojo M, Topalis P, Tubio JM, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MA, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ (2015) Mosquito genomics. Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science 347:1258522

    Article  PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O’leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  CAS  PubMed  Google Scholar 

  • Pardue ML, Danilevskaya ON, Traverse KL, Lowenhaupt K (1997) Evolutionary links between telomeres and transposable elements. Genetica 100:73–84

    Article  CAS  PubMed  Google Scholar 

  • Permal E, Flutre T, Quesneville H (2012) Roadmap for annotating transposable elements in eukaryote genomes. Methods Mol Biol 859:53–68

    Article  CAS  PubMed  Google Scholar 

  • Piégu B, Bire S, Arensburger P (2015) A survey of transposable element classification systems—a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 86:90–109

    Article  PubMed  Google Scholar 

  • Platt RN 2nd, Blanco-Berdugo L, Ray DA (2016) Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol Evol 8(2):403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:166–175

    Article  CAS  PubMed  Google Scholar 

  • Rho M, Tang H (2009) MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes. Nucleic Acids Res 37:e143

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards S, Gibbs RA (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  CAS  PubMed  Google Scholar 

  • Steinbiss S, Willhoeft U, Gremme G, Kurtz S (2009) Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res 37:7002–7013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbiss S, Kastens S, Kurtz S (2012) LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons. Mob DNA 3:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  Google Scholar 

  • Vega FE, Brown SM, Chen H, Shen E, Nair MB, Ceja-Navarro JA, Brodie EL, Infante F, Dowd PF, Pain A. (2015) Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Sci Rep 5:12525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Lorenzen MD (2008) Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9(3):R61

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wong LH, Choo KH (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616

    Article  CAS  PubMed  Google Scholar 

  • Wright S, Finnegan D (2001) Genome evolution: sex and the transposable element. Curr Biol 11(8):R296–R299

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9(10):3353–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, He L, Lai J, Dooner HK, Du C (2014) HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci USA 111:10263–10268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Hall TC (2003) MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res 31:3659–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H-H, Shen Y-H (2016) Identification and evolutionary history of the DD41D transposons in insects. Genes Genomics 38(2):109–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No. 2013/15070-4) and from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant No. 306493/2013-6) to CMAC, FAPESP fellowship Grant No. 12/24813-8 to EHH, fellowship from Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (CAPES/FAPERJ) to RDFM and Ministerio de Agricultura y Desarrollo Rural de Colombia to PBM, JN and LNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. A. Carareto.

Ethics declarations

Conflict of interest

Author EMHH, author RDFM, author LNE, author JN, author PBM and author CMAC declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 625 KB)

Supplementary material 2 (XLSX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Hernandez, E.M., Fernández-Medina, R.D., Navarro-Escalante, L. et al. Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genomics 292, 565–583 (2017). https://doi.org/10.1007/s00438-017-1291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1291-7

Keywords

Navigation