Skip to main content

Advertisement

Log in

Use of skeletal Sr/Ca ratios to determine growth patterns in a branching coral Isopora palifera

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Studies on the growth response of corals to changing climate have largely focused on long-lived corals with relatively distinct density bands such as massive Porites corals. Little is known about the climatic response of other more abundant growth forms, such as branching Acropora corals, largely because of the absence of a clear annual density banding pattern. Using a combination of X-radiography, gamma densitometry, Sr/Ca analysis, and Uranium–Thorium (U-Th) dating, we quantified patterns of annual growth in the robust branching coral Isopora palifera from the central Great Barrier Reef (GBR), Australia (18°16′S 147°22′E) collected in May 2013. While visual analysis of the positive X-radiographs revealed alternating patterns of high- and low-density bands along the central growth axis, gamma-densitometry analysis suggests that these bands do not exhibit a clear annual cycle. In contrast, skeletal Sr/Ca ratios consistently revealed clear patterns of seasonality matching local sea surface temperatures (SST), and provided a growth chronology to calculate linear extension rate, skeletal density and calcification rate. Comparisons between SST-Sr/Ca calibrations derived from our I. palifera samples with (i) massive Porites from the same location and (ii) Isopora spp. from the GBR and Papua New Guinea revealed significant differences of up to 3.5 °C, implying palaeoclimate reconstructions should use site-specific and species-specific Sr/Ca-SST calibrations. Our approach provides a robust method for assessing changes in growth for a common Indo-Pacific branching coral, and provides a valuable framework for quantifying past and future changes in skeletal growth in response to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–363. doi:10.1029/97pa00318

    Article  Google Scholar 

  • Anderson KD, Heron SF, Pratchett MS (2015) Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island. Coral Reefs 34:479–490. doi:10.1007/s00338-014-1251-1

  • Ayre DJ, Veron JEN, Dufty SL (1991) The corals Acropora palifera and Acropora cuneata are genetically and ecologically distinct. Coral Reefs 10:13–18. doi:10.1007/BF00301901

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294

    Google Scholar 

  • Barnes DJ, Lough JM (1989) The nature of skeletal density banding in scleractinian corals: fine banding and seasonal patterns. J Exp Mar Biol Ecol 126:119–134. doi:10.1016/0022-0981(89)90084-1

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1992) Systematic variations in the depth of skeleton occupied by coral tissue in massive colonies of Porites from the Great Barrier Reef. J Exp Mar Biol Ecol 159:113–128. doi:10.1016/0022-0981(92)90261-8

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108. doi:10.1016/0022-0981(93)90186-r

    Article  Google Scholar 

  • Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Article  CAS  Google Scholar 

  • Brown BE, Cossins AR (2011) The potential for temperature acclimatisation of reef corals in the face of climate change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Netherlands, Dordrecht, pp 421–433

    Chapter  Google Scholar 

  • Budd AF, Wallace CC (2008) First record of the Indo-Pacific reef coral genus Isopora in the Caribbean region: two new species from the Neogene of Curaçao, Netherlands Antilles. Palaeontology 51:1387–1401. doi:10.1111/j.1475-4983.2008.00820.x

    Article  Google Scholar 

  • Buddemeier RW, Kinzie RA (1975) The chronometric reliability of contemporary corals. In: Rosenberg GD, Runcorn SK (eds) Growth rhythms and the history of the earth’s rotation. John Wiley, pp 135–147

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–199. doi:10.1016/0022-0981(74)90024-0

    Article  Google Scholar 

  • Cahyarini S, Pfeiffer M, Dullo WC (2009) Improving SST reconstructions from coral Sr/Ca records: multiple corals from Tahiti (French Polynesia). Int J Earth Sci (Geol Rundsch) 98:31–40. doi:10.1007/s00531-008-0323-2

    Article  CAS  Google Scholar 

  • Cardinal D, Hamelin B, Bard E, Pätzold J (2001) Sr/Ca, U/Ca and δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176:213–233. doi:10.1016/s0009-2541(00)00396-x

    Article  CAS  Google Scholar 

  • Carricart-Ganivet JP, Cabanillas-Terán N, Cruz-Ortega I, Blanchon P (2012) Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals. PLoS One 7:e32859. doi:10.1371/journal.pone.0032859

    Article  CAS  Google Scholar 

  • Chalker B, Barnes D (1990) Gamma densitometry for the measurement of skeletal density. Coral Reefs 9:11–23. doi:10.1007/BF00686717

    Article  Google Scholar 

  • Clark TR, Roff G, Zhao J-x, Feng Y-x, Done TJ, Pandolfi JM (2014) Testing the precision and accuracy of the U–Th chronometer for dating coral mortality events in the last 100 years. Quat Geochronol 23:35–45. doi:10.1016/j.quageo.2014.05.002

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Biol 14:529–538. doi:10.1111/j.1365-2486.2007.01520.x

  • Cooper TF, O’Leary RA, Lough JM (2012) Growth of Western Australian corals in the anthropocene. Science 335:593–596. doi:10.1126/science.1214570

    Article  CAS  Google Scholar 

  • Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr Palaeoclimatol Palaeoecol 232:408–428. doi:10.1016/j.palaeo.2005.10.014

    Article  Google Scholar 

  • D’Olivo JP, McCulloch MT, Judd K (2013) Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change. Coral Reefs 32:999–1012. doi:10.1007/s00338-013-1071-8

    Article  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119. doi:10.1126/science.1165283

    Article  Google Scholar 

  • Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral, Montastrea annularis: St. Croix, U.S. Virgin Islands. Bull Mar Sci 34:288–307

    Google Scholar 

  • Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1:95–107. doi:10.1007/bf00301691

    Article  Google Scholar 

  • Dunbar RB, Wellington GM (1981) Stable isotopes in a branching coral monitor seasonal temperature variation. Nature 293:453–455. doi:10.1038/293453a0

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238. doi:10.1016/s0012-821x(99)00200-9

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22:389–404. doi:10.1007/s00338-003-0322-5

    Article  Google Scholar 

  • Faraway JJ (2002) Practical regression and ANOVA using R. University of Bath

  • Felis T, McGregor HV, Linsley BK, Tudhope AW, Gagan MK, Suzuki A, Inoue M, Thomas AL, Esat TM, Thompson WG (2014) Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nat Commun 5:4102. doi:10.1038/ncomms5102

  • Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279:1014–1018. doi:10.1126/science.279.5353.1014

    Article  CAS  Google Scholar 

  • Gallup CD, Olson DM, Edwards RL, Gruhn LM, Winter A, Taylor FW (2006) Sr/Ca-Sea surface temperature calibration in the branching Caribbean coral Acropora palmata. Geophys Res Lett 33:L03606. doi:10.1029/2005GL024935

    Article  Google Scholar 

  • Gladfelter E (1984) Skeletal development in Acropora cervicornis III. A comparison of monthly rates of linear extension and calcium carbonate accretion measured over a year. Coral Reefs 3:51–57. doi:10.1007/bf00306140

    Article  CAS  Google Scholar 

  • Greer L, Jackson JE, Curran HA, Guilderson T, Teneva L (2009) How vulnerable is Acropora cervicornis to environmental change? Lessons from the early to middle Holocene. Geology 37:263–266. doi:10.1130/G25479A

    Article  CAS  Google Scholar 

  • Hathorne EC, Gagnon A, Felis T, Adkins J, Asami R, Boer W, Caillon N, Case D, Cobb KM, Douville E (2013) Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochem Geophy Geosyst 14:3730–3750. doi:10.1002/ggge.20230

    Article  CAS  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125. doi:10.1016/0022-0981(79)90089-3

    Article  Google Scholar 

  • Houck JE, Buddemeier RW, Smith SV, Jokiel PL (1977) The response of coral growth rate and skeletal strontium content to light intensity and water temperature. In: Proceedings, 3rd international coral reef symposium, pp 425–431

  • Hudson JH (1981) Growth rates in Montastraea annularis: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bull Mar Sci 31:444–459

    Google Scholar 

  • Hughes TP (1987) Skeletal density and growth form of corals. Mar Ecol Prog Ser 35:259–266. doi:10.3354/meps035259

    Article  Google Scholar 

  • Klein R, Loya Y (1991) Skeletal growth and density patterns of two Porites corals from the Gulf of Eilat, Red Sea. Mar Ecol Prog Ser 77:253–259

    Article  Google Scholar 

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272. doi:10.1126/science.177.4045.270

    Article  CAS  Google Scholar 

  • Kojis BL (1986) Sexual reproduction in Acropora (Isopora) species (Coelenterata: Scleractinia) I. A. cuneata and A. palifera on Heron Island reef, Great Barrier Reef. Mar Biol 91:291–309. doi:10.1007/BF00428623

    Article  Google Scholar 

  • LaVigne M, Grottoli AG, Palardy JE, Sherrell RM (2016) Multi-colony calibrations of coral Ba/Ca with a contemporaneous in situ seawater barium record. Geochim Cosmochim Acta 179:203–216. doi:10.1016/j.gca.2015.12.038

    Article  CAS  Google Scholar 

  • Le Bec N, Julliet-Leclerc A, Corrège T, Blamart D, Delcroix T (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys Res Lett 27:3897–3900

    Article  Google Scholar 

  • Lemley GM (2012) Assessing δ18O in the coral genus Isopora for reconstructing Indo-Pacific regional and seasonal climate variability. University at Albany, State University of New York

  • Lough JM (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264. doi:10.3354/meps07398

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1989) Possible relationships between environmental variables and skeletal density in a coral colony from the central Great Barrier Reef. J Exp Mar Biol Ecol 134:221–241. doi:10.1016/0022-0981(89)90071-3

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1990) Intra-annual timing of density band formation of Porites coral from the central Great Barrier Reef. J Exp Mar Biol Ecol 135:35–57. doi:10.1016/0022-0981(90)90197-k

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1992) Comparisons of skeletal density variations in Porites from the central Great Barrier Reef. J Exp Mar Biol Ecol 155:1–25. doi:10.1016/0022-0981(92)90024-5

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243. doi:10.1016/s0022-0981(99)00168-9

    Article  CAS  Google Scholar 

  • Ludwig K (2012) User’s manual for Isoplot version 3.75–4.15: a geochronological toolkit for Microsoft Excel. Berkley Geochronological Center Special Publication

  • MacIntyre IG (1977) Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. J Sediment Res 47:503–516

    CAS  Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758. doi:10.1007/s00338-010-0623-4

    Article  Google Scholar 

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280. doi:10.1016/s0016-7037(02)00926-2

    Article  CAS  Google Scholar 

  • McClanahan TR, Ateweberhan M, Muhando CA, Maina J, Mohammed MS (2007) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77:503–525. doi:10.1890/06-1182.1

    Article  Google Scholar 

  • McCulloch M, Fallon S, Wyndham T, Hendy E, Lough JM, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730. doi:10.1038/nature01361

    Article  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963

    Article  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Uchida T (2003) Mg/Ca and Sr/Ca ratios of Porites coral skeleton: evaluation of the effect of skeletal growth rate. Coral Reefs 22:381–388. doi:10.1007/s00338-003-0326-1

    Article  Google Scholar 

  • Nguyen A, Zhao J, Feng Y, Hu W, Yu K, Gasparon M, Pham T, Clark T (2013) Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: evidence from a Porites lutea geochemical record. Coral Reefs 32:181–193. doi:10.1007/s00338-012-0962-4

    Article  Google Scholar 

  • Nishida K, Iguchi A, Ishimura T, Sakai K, Suzuki A (2014) Skeletal isotopic responses of the scleractinian coral Isopora palifera to experimentally controlled water temperatures. Geochem J 48:9–14. doi:10.2343/geochemj.2.0317

  • Nothdurft LD, Webb GE (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26. doi:10.1007/s10347-006-0090-0

    Article  Google Scholar 

  • Oliver JK (1984) Intra-colony variation in the growth of Acropora formosa: extension rates and skeletal structure of white (zooxanthellae-free) and brown-tipped branches. Coral Reefs 3:139–147. doi:10.1007/bf00301958

    Article  Google Scholar 

  • Pätzold J (1984) Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines). Coral Reefs 3:87–90. doi:10.1007/bf00263758

    Article  Google Scholar 

  • Potts DC (1976) Growth interactions among morphological variants of the coral Acropora palifera. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Publishing Corp., New York, pp 78–99

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Randall RH (1981) Morphologic diversity in the scleractinian genus Acropora. In: Proceedings, 4th international coral reef symposium, pp 157–164

  • Roche RC, Abel RA, Johnson KG, Perry CT (2010) Quantification of porosity in Acropora pulchra (Brook 1891) using X-ray micro-computed tomography techniques. J Exp Mar Biol Ecol 396:1–9. doi:10.1016/j.jembe.2010.10.006

    Article  Google Scholar 

  • Roche RC, Abel RL, Johnson KG, Perry CT (2011) Spatial variation in porosity and skeletal element characteristics in apical tips of the branching coral Acropora pulchra (Brook 1891). Coral Reefs 30:195–201. doi:10.1007/s00338-010-0679-1

    Article  Google Scholar 

  • Roff G, Zhao J-X, Mumby PJ (2015) Decadal-scale rates of reef erosion following El Niño related mass coral mortality. Glob Change Biol 21:4415–4424. doi:10.1111/gcb.13006

  • Shen C-C, Lee T, Chen C-Y, Wang C-H, Dai C-F, Li L-A (1996) The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochim Cosmochim Acta 60:3849–3858. doi:10.1016/0016-7037(96)00205-0

    Article  CAS  Google Scholar 

  • Shirai K, Kawashima T, Sowa K, Watanabe T, Nakamori T, Takahata N, Amakawa H, Sano Y (2008) Minor and trace element incorporation into branching coral Acropora nobilis skeleton. Geochim Cosmochim Acta 72:5386–5400. doi:10.1016/j.gca.2008.07.026

    Article  CAS  Google Scholar 

  • Sun Y, Sun M, Lee T, Nie B (2005) Influence of seawater Sr content on coral Sr/Ca and Sr thermometry. Coral Reefs 24:23–29. doi:10.1007/s00338-004-0467-x

    Article  Google Scholar 

  • Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528. doi:10.1007/s00338-008-0457-5

    Article  Google Scholar 

  • Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Change Biol 19: 3011–3023 doi:10.1111/gcb.12279

  • Veron JEN, Wallace CC (1984) Scleractinia of Eastern Australia. Part V: Family Acroporidae. Australian Institute Marine Science Monograph Series v. 6. doi:10.5962/bhl.title.60641

  • Wallace C (1999) Staghorn corals of the world: a revision of the genus Acropora. CSIRO publishing, Collingwood.

  • Weber JN, White EW, Weber PH (1975) Correlation of density banding in reef coral skeletons with environmental parameters: the basis for interpretation of chronological records preserved in the coralla of corals. Paleobiology 1:137–149

    Article  Google Scholar 

  • Wei G, Sun M, Li X, Nie B (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeogr Palaeoclimatol Palaeoecol 162:59–74. doi:10.1016/s0031-0182(00)00105-x

    Article  Google Scholar 

  • Yu K-F, Zhao J-X, Wei G-J, Cheng X-R, Chen T-G, Felis T, Wang P-X, Liu T-S (2005) δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Palaeogeogr Palaeoclimatol Palaeoecol 218:57–73. doi:10.1016/j.palaeo.2004.12.003

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Eric Matson of the Australian Institute of Marine Science for assistance in coral collection and sample preparation, Tara Clark at the Radiogenic Isotope Facility, The University of Queensland for assistance in U-Th dating and Alberto Rodríguez-Ramírez and Jani Tanzil for their invaluable inputs at the early stage of the study. This study was supported by an ARC Laureate Fellowship to PJM (FL0992179) and the Australian Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tries B. Razak.

Ethics declarations

Collection of Isopora samples was approved by the Great Barrier Reef Marine Park Authority and the Queensland Parks and Wildlife Service (Permit Number G11/34408.1) and funded by the Australian Institute of Marine Science. No animal ethics research permit needed for invertebrates, however all procedures in processing and extracting the corals were in accordance with the ethical standards of the institutions at which the studies were conducted. All authors approved the final version of the manuscript and consent to submit has been received from all co-authors and institutions.

Additional information

Responsible Editor: A.G. Checa.

Reviewed by I. Coronado and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 993 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razak, T.B., Mumby, P.J., Nguyen, A.D. et al. Use of skeletal Sr/Ca ratios to determine growth patterns in a branching coral Isopora palifera . Mar Biol 164, 96 (2017). https://doi.org/10.1007/s00227-017-3099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3099-8

Keywords

Navigation