Skip to main content
Log in

Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Scleractinian corals are increasingly used as recorders of modern and paleoclimates. The microstructure of four common reef-building coral genera is documented here: Acropora, Pocillopora, Goniastrea, and Porites. This study highlights the complexity and spatial variability of skeletal growth in different coral genera and suggests that a single growth model is too generalized to allow the accurate depiction of the variability observed in the four genera studied. New models must be introduced in order for coral skeletogenesis to be understood adequately to allow coral skeletons to serve as repositories of temporally constrained geochemical data. Owing to differences in microstructural patterns in different genera, direct observation of microstructural elements and growth lines may be necessary to allow microsamples to be placed into series that represent temporal sequences with known degrees of time averaging. Such data are critical for constraining microsampling strategies aimed at developing true time series geochemical data at very fine spatial and temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alibert C, Kinsley L, Fallon SJ, McCulloch MT, Berkelmans R, McAllister FA (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67:231–246

    Article  Google Scholar 

  • Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–364

    Article  Google Scholar 

  • Allison N (1996) Comparative determinations of trace elements in coral aragonite by ion microprobe analysis, with preliminary results from Phucket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470

    Article  Google Scholar 

  • Allison N, Finch AA (2004) High-resolution Sr/Ca records in modern Porites lobata corals: effects of skeletal extension rate and architecture. Geochem Geophys Geosystems 5:Q05001, DOI:10.1029/2004GC000696

    Article  Google Scholar 

  • Allison N, Tudhope AW (1992) Nature and significance of geochemical variation in coral skeletons as determined by ion microprobe analysis. Proc 7th Int Coral Reef Symp 1:173–178

    Google Scholar 

  • Babcock RC (1988) Age-structure, survivorship and fecundity in populations of massive corals. Proc 6th Int Coral Reef Symp 2:625–627

    Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exper Mar Biol Ecol 167:91–108

    Article  Google Scholar 

  • Beck JW, Edwards RL, Ito E, Taylor FW, Récy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Article  Google Scholar 

  • Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc Royal Soc Queensland 52:78–91

    Google Scholar 

  • Cohen AL, Layne GD, Hart SR (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  • Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296:331–333

    Article  Google Scholar 

  • Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exper Zool 248:253–258

    Article  Google Scholar 

  • Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr Palaeoclimat Palaeoecol 232:408–428

    Article  Google Scholar 

  • Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of 'centers of calcification' in septa of some Recent scleractinian corals. Paläontol Zeitschrift 72:257–270

    Google Scholar 

  • Cuif J-P, Dauphin Y (2005) The environmental recording unit in coral skeletons - a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2:67–73

    Article  Google Scholar 

  • Cuif J-P, Dauphin Y, Berthet P, Jegoudez J (2004) Associated water and organic compounds in coral skeletons: quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochem Geophys Geosyst 5: DOI:10.1029/2004GC000783

  • Cuif J-P, Dauphin Y, Doucet J, Salome M, Susin J (2003a) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83

    Article  Google Scholar 

  • Cuif J-P, Dauphin Y, Gautret P (1997) Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Boletin Real Sociedad Española Hist Nat, (Seccion Geologia) 92:129–141

    Google Scholar 

  • Cuif J-P, Lecointre G, Perrin C, Tillier A, Tillier S (2003b) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scripta 32:459–473

    Article  Google Scholar 

  • Cuif J-P, Perrin C (1999) Micromorphology and microstructure as expression of Scleractinia skeletogenesis in Favia fragum (Esper, 1975) (Faviidai, Scleractinia). Zoosystema 21:137–156

    Google Scholar 

  • Cuif J-P, Sorauf JE (2001) Biomineralization and diagenesis in the Scleractinia: part 1, biominerlization. Bull Tohoku Univ Museum 1:144–151

    Google Scholar 

  • de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperature. Science 269:1247–1249

    Article  Google Scholar 

  • Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Pollution Bull 40:404–425

    Article  Google Scholar 

  • Esslemont G (1999) Heavy metals in corals from Heron Island and Darwin Habour, Australia. Mar Pollution Bull 38:1051–1054

    Article  Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238

    Article  Google Scholar 

  • Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66:45–62

    Article  Google Scholar 

  • Gautret P, Cuif J-P, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36:189–194

    Article  Google Scholar 

  • Gautret P, Cuif J-P, Stolarski J (2000) Organic components of the skeleton of scleractinian corals - evidence from in situ acridine orange staining. Acta Palaeontol Polonica 45:107–118

    Google Scholar 

  • Gill IP, Dickson JAD, Hubbard DK (2006) Daily banding in corals: Implications for paleoclimatic reconstruction and skeletonization. J Sedim Res 76:683–688

    Google Scholar 

  • Glynn PW, Stewart RH (1973) Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol Oceanogr 18:367–379

    Article  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. 1. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  Google Scholar 

  • Hanna RG, Muir GL (1990) Red Sea corals as biomonitors of trace metal pollution. Environ Monit Assess 14:211–222

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Article  Google Scholar 

  • Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60: 3075–3084

    Article  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Experim Mar Biol Ecol 27:105–125

    Article  Google Scholar 

  • Jell JS (1974) The microstructure of some scleractinian corals. Proc 2nd Coral Reef Symp 2:301–320

    Google Scholar 

  • Jell JS, Hill D (1974) The microstructure of corals. In: Ancient Cnidaria. Acad Sci USSR Trans Inst Geol Geophys 201(1):8–14

  • Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214

    Article  Google Scholar 

  • Kato M (1963) Fine skeletal structures in Rugosa. J Faculty Sci Hokkaido Univ 11:571–630

    Google Scholar 

  • Lafuste J (1970) Lames ultra-minces à faces polies. Procédé et application à la microstructure des Madréporaires fossils. CR Acad Sci Paris 270:679–681

    Google Scholar 

  • Lafuste J, Plusquellec Y (1985) Structure et microstructure de quelques Micheliniidae et Michelinimorphes (Tabulata paléozoiques). Bull Mus Nat Hist Nat, Paris (4, C) 1:13–63

    Google Scholar 

  • Lafuste J, Plusquellec Y (1987) Structure et microstructure de Favosites cylindrica Michelin 1847, espece-type de Ohiopora n. gen. (Tabulata, Devonien). Can J Earth Sci 24:1465–1477

    Article  Google Scholar 

  • Lafuste J, Plusquellec Y, Soto F (1993) Coexistence de lamelles et de microlamelles dans le sclérenchyme de “Ligulodictyum” Plusquellec, 1973 (Tabulata, Dévonien du Nord-Gondwana). Courier Forschungsinstitut Senckenberg 164:329–337

    Google Scholar 

  • Lea DW, Shen GT, Boyle EA (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340:373–376

    Article  Google Scholar 

  • Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D. Science 290:1145–1148

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1997) Centuries-long records of coral growth on the Great Barrier Reef. Great Barrier Reef Marine Park Authority Workshop Series 17:149–157

    Google Scholar 

  • Marshall AT (2002) Occurrence, distribution, and localisation of metals in cnidarians. Microscopy Res Tech 56:341–357

    Article  Google Scholar 

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280

    Article  Google Scholar 

  • Mayor A (1924) Growth rate of Samoan corals. Carnegie Inst Wash Publ 340:51–72

    Google Scholar 

  • McCulloch MT, Fallon SJ, Wyndham T, Hendy E, Lough JM, Barnes DJ (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730

    Article  Google Scholar 

  • McGregor HV, Gagan MK (2003) Diagenesis and geochemistry of Porites coral from Papua New Guinea: implications for paleoclimate reconstruction. Geochim Cosmochim Acta 67:2147–2156

    Article  Google Scholar 

  • Meibom A, Cuif J-P, Hillion F, Constantz BR, Juillet-Leclerc, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31:L23306, DOI:10.1029/2004GL021313

    Article  Google Scholar 

  • Meibom A, Stage M, Wooden J, Constantz BR, Dunbar RB, Owen A, Grumet N, Bacon CR, Chamberlain CP (2003) Monthly strontium/calcium oscillations in symbiotic coral aragonite: biological effects limiting the precision of the paleotemperature proxy. Geophys Res Lett 30:1418–1421

    Article  Google Scholar 

  • Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbreque F, Constantz B, Dauphin Y, Tambutté E, Tambutté S, Allemand D, Wooden J, Dunbar R (2006) Vital effects on coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33:L11608, DOI:10.1029/2006GL025968

    Article  Google Scholar 

  • Mitterer RM (1978) Aminoacid composition and metal binding capability of the skeletal proteins of coral. Bull Mar Sci 28:173–180

    Google Scholar 

  • Munksgaard NC, Antwertinger Y, Parry DL (2004) Laser Ablation ICP-MS analysis of Faviidae corals for environmental monitoring of tropical estuary. Environ Chem 1:188–196

    Article  Google Scholar 

  • Nothdurft LD, Webb GE (in press) ‘Shingle’ microstructure in scleractinian corals: a possible analogue for lamellar and microlamellar microstructure in Palaeozoic tabulate corals. Schriftenreihe der Erdwissenschaftlichen Kommissionen

  • Oekentorp KAW (2001) Review on diagenetic microstructures in fossil corals - a controversial discussion. Bull Tohoku Univ Mus 1:193–209

    Google Scholar 

  • Ogilvie MM (1896) Microscopic and systematics study of madreporarian types of corals. Phil Trans Roy Soc Lond 29:83–345

    Google Scholar 

  • Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons: implications for taxonomy and control on early diagenesis. Coral Reefs 22:109–120

    Article  Google Scholar 

  • Perrin C (2004) Diagenese precoce des biocristaux carbonayes: tranformations isominerales de l'aragonite corallienne. Bull. Soc. Geol. France 175:95–106

    Article  Google Scholar 

  • Perrin C, Cuif J-P (2001) Ultrastructural controls on diagenetic patterns of scleractinian skeletons: evidence at the scale of colony lifetime. Bull Tohoku Univ Mus 1:210–218

    Google Scholar 

  • Rodriquez S (1989) Lamellar microstructure in Palaeozoic corals: origin and use in taxonomy. Mem Assoc Australas Palaeontols 8:157–168

    Google Scholar 

  • Rollion-Bard C, Blamart D, Cuif J-P, Juillet-Leclerc A (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22:405–415

    Article  Google Scholar 

  • Roniewicz E (1996) The key role of skeletal microstructure in recognizing high-rank scleractinian taxa in the stratigraphical record. Paleontol Soc Papers 1:187–206

    Google Scholar 

  • Runnalls LA, Coleman ML (2003) Record of natural and anthropogenic changes in reef environments (Barbados West Indies) using laser ablation ICP-MS and sclerochronolgy on coral cores. Coral Reefs 22:416–426

    Article  Google Scholar 

  • Semenoff-tian-Chansky P (1984) Microstructure of Siphonodendron (Lithostrotionidae). Palaeontogr Amer 54:489–500

    Google Scholar 

  • Shen GT, Boyle EA (1988) Determination of lead, cadmium and other trace metals in annually-banded corals. Chem Geol 67:47–62

    Article  Google Scholar 

  • Sinclair DJ (2005) Correlated trace element “vital effects” in tropical corals: a new geochemical tool for probing biomineralization. Geochim Cosmochim Acta 69:3265–3284

    Article  Google Scholar 

  • Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High-resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901

    Article  Google Scholar 

  • Sinclair DJ, McCulloch MT (2004) Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeogr Palaeoclimat Palaeoecol 214:155–174

    Article  Google Scholar 

  • Sorauf JE (1970) Microstructure and formation of dissepiments in the skeleton of recent Scleractinia (hexacorals). Biomineralization 2:1–22

    Google Scholar 

  • Sorauf JE (1972) Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontol 15:88–107

    Google Scholar 

  • Sorauf JE (1993) The coral skeleton: analogy and comparisons, Scleractinia, Rugosa, and Tabulata. Courier Forschungsinstitut Senckenberg 164:63–70

    Google Scholar 

  • Sorauf JE (1996) Biocrystallization models and skeletal structure of Phanerozoic corals. Paleontol Soc Papers 1:159–185

    Google Scholar 

  • Sorauf JE, Podoff N (1977) Skeletal structure in deep water ahermatypic corals. Mém Bur Rech Géol Minièr 89:2–11

    Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Polonica 48:497–530

    Google Scholar 

  • Stolarski J, Mazur M (2005) Nanostructure of biogenic versus abiogenic calcium carbonate crystals. Acta Palaeontol Polonica 50:847–865

    Google Scholar 

  • Towe KM (1972) Invertebrate shell structure and the organic matrix concept. Biomineralization 4:1–7

    Google Scholar 

  • Vandermeulen JH, Watabe N (1973) Studies on reef corals. I. Skeleton formation by newly settled planula larva of Pocillopora damicornis. Mar Biol 23:47–57

    Article  Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson Publishers, Australia, 644 pp

    Google Scholar 

  • Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora. CSIRO Publishing, Collingwood, 421 pp

    Google Scholar 

  • Wang HC (1950) A revision of the Zoantharia Rugosa in the light of their minute skeletal structures. Phil Trans R Soc Lond B 234:175–246

    Google Scholar 

  • Wise SWJ (1970) Scleractinian coral exoskeletons: surface microarchitecture and attachment scar patterns. Science 169:978–980

    Article  Google Scholar 

  • Wyndham T, McCulloch M, Fallon S, Alibert C (2004) High-resolution coral records of rare-earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochim Cosmochim Acta 68:2067–2080

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J.E. Sorauf, J.S. Jell, and J.-P. Cuif for discussions on coral microstructure and all staff at the Analytical Electron Microscopy Facility at the Queensland University of Technology (QUT) where all scanning electron microscopy was carried out. We also thank two anonymous reviewers who made very helpful comments on the manuscript. The research was funded by QUT and by a QUT Australian Tertiary Network Small Grant to Webb. Corals were collected under Marine Parks Permit G03/9787.1 from the Great Barrier Reef Marine Park Authority

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke D. Nothdurft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nothdurft, L.D., Webb, G.E. Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53, 1–26 (2007). https://doi.org/10.1007/s10347-006-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-006-0090-0

Keywords

Navigation