Skip to main content

Advertisement

Log in

Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Cores from colonies of the coral species Porites sp. were collected from inshore, mid-shelf, and outer reef localities (central Great Barrier Reef) to test the robustness of the major elemental sea surface temperature (SST) proxies (B/Ca, Mg/Ca, Sr/Ca, U/Ca) to the influence of inshore processes. Time series analyses of Sr/Ca, U/Ca, B/Ca, and Mg/Ca are compared to sea surface temperature (SST) in order to provide calibrations for these elements. This study shows that there are significant variations between the corals with respect to some of the proxies. In some cases, variations of ~6 °C are observed for a single U/Ca value. This magnitude of variation is also seen in the Mg/Ca proxy and, to a smaller extent, in the B/Ca–SST relationship. In two of the corals, both Mg/Ca and U/Ca do not follow a seasonal signal. The Mg/Ca and U/Ca ratios for two inshore corals are significantly different than the offshore corals (lower and higher, respectively). The other two proxies (B/Ca and Sr/Ca) do not display any inshore vs. offshore variations except for one inshore site that did not have a clear seasonal signal for either of these proxies. The Sr/Ca–SST relationship is the most robust, with a temperature variation of ~2 °C for a single Sr/Ca value, which is within error for this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. A
Fig. 4. A
Fig. 5. A
Fig. 6. A
Fig. 7. A
Fig. 8. A
Fig. 9. A
Fig. 10.

Similar content being viewed by others

References

  • Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–363

    Google Scholar 

  • Alibert C, Kinsley L, Fallon SJ, McCulloch MT, Berkelmans R, McAllister F (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67:231–246

    Article  CAS  Google Scholar 

  • Allison N (1996) Geochemical anomalies in coral skeletons and their possible implications for palaeoenvironmental analyses. Mar Chem 55:367–379

    Article  CAS  Google Scholar 

  • Allison N, Tudhope AW (1992) Nature and significance of geochemical variations in coral skeletons as determined by ion microprobe analysis. In: 7th Int Coral Reef Symp 1:173–178

  • Amiel AJ, Friedman GM, Miller DS (1973) Distribution and nature of incorporation of trace elements in modern aragonitic corals. Sedimentology 20:47–64

    CAS  Google Scholar 

  • Barnes DJ, Lough JM (1993) On the Nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108

    Article  Google Scholar 

  • Beck JW, Edwards. RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Google Scholar 

  • Beck JW, Recy J, Taylor F, Edwards RL, Cabioch G (1997) Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature 385:705–707

    Google Scholar 

  • Boto K, Isdale P (1985) Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone. Nature 315:396–397

    Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–200

    Article  Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. J Geol 62:266–283

    CAS  Google Scholar 

  • Cross TS, Cross BW (1983) U, Sr, Mg in Holocene and Pleistocene corals A. palmata and M. annularis. J Sediment Petrol 53:587–594

    CAS  Google Scholar 

  • deVilliers S, Shen GT, Nelson BK (1994) The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca) seawater and skeletal growth parameters. Geochim Cosmochim Acta 58:197–208

    Article  Google Scholar 

  • Djogic R, Sipos L, Branica M (1986) Characterization of uranium (VI) in seawater. Limnol Oceanogr 31:1122–1131

    CAS  Google Scholar 

  • Druffel ER (1985) Detection of El Niño and decade time scale variations of sea surface temperature from banded coral records: implications for the carbon dioxide cycle. In: Sundquist EB (ed) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Am Geophys Monogr:111–123

    Google Scholar 

  • Dunbar RB, Wellington GM (1981) Stable isotopes in a branching coral monitor seasonal temperature variation. Nature 293:453–455

    CAS  Google Scholar 

  • Emiliani C, Hudson JH, Shinn EA, George RY (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202:627–629

    Google Scholar 

  • Fairbanks RG, Dodge RE (1979) Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Monastrea annularis. Geochim Cosmochim Acta 43:1009–1020

    Article  CAS  Google Scholar 

  • Fairbanks RG, Evans MN, Rubenstone JL, Mortlock RA, Broad K, Moore MD, Charles CD (1997) Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16:s93–s100

    Article  Google Scholar 

  • Fallon SJ (2000) Environmental records from corals and coralline sponges. Earth Sciences, Australian National University, Canberra, 289

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238

    Article  CAS  Google Scholar 

  • Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima island, Papua New Guinea. Geochim Cosmochim Acta 66:45–62

    Article  CAS  Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, McCulloch MT, Head MJ (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279:1014–1017

    CAS  PubMed  Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from coral. Q Sci Rev 19:45–65

    Article  Google Scholar 

  • Gaillardet J, Allegre CJ (1995) Boron isotopic compositions of corals: seawater or diagenesis record? Earth Planet Sci Lett 136:665–676

    Article  CAS  Google Scholar 

  • Given RK, Wilkinson BH (1985) Kinetic control of morphology, composition and mineralogy of abiotic sedimentary carbonates. J Sediment Petrol 55:109–119

    CAS  Google Scholar 

  • Goreau TJ (1977) Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proc R Soc Lond 196:291–315

    CAS  Google Scholar 

  • Greegor RB, Pingitore NE, Lytle FW (1997) Strontianite in coral skeletal aragonite. Science 275:1452–1454

    Article  CAS  PubMed  Google Scholar 

  • Guilderson TP, Fairbanks RG, Rubenstone JL (1994) Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263:663–665

    Google Scholar 

  • Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60:3075–3084

    Article  CAS  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Article  CAS  Google Scholar 

  • Hemming NG, Reeder RJ, Hanson GN (1995) Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim Cosmochim Acta 59:371–379

    Article  CAS  Google Scholar 

  • Hemming NG, Guilderson TP, Fairbanks RG (1998) Seasonal variations in the boron isotopic composition of coral: a productivity signal? Global Biogeochem Cycles 12:581–586

    CAS  Google Scholar 

  • Hershey JP, Fernandez M, Milne PJ, Millero FJ (1986) The ionization of boric acid in NaCl, Na-Ca-Cl and Na-Mg-Cl solutions at 25 °C. Geochim Cosmochim Acta 50:143–148

    Article  CAS  Google Scholar 

  • Ichikuni M, Kikuchi K (1972) Retention of boron by travertines. Chem Geol 9:13–21

    Article  CAS  Google Scholar 

  • Ip YK, Lim ALL (1991) Are calcium and strontium transported by the same mechanism in the hermatypic coral Galaxea fascicularis? J Exp Biol 159:201–513

    Google Scholar 

  • Isdale P (1984) Fluorescent bands in massive corals record centuries of coastal rainfall. Nature 310:578–579

    Google Scholar 

  • Isdale PJ, Stewart BJ, Tickle KS, Lough JM (1998) Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in coral of the Great Barrier Reef, Australia. Holocene 8:1–8

    Article  Google Scholar 

  • Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion exchange separation of boron isotopes. Bull Chem Soc Jpn 50:158–163

    CAS  Google Scholar 

  • Katz A (1973) The interaction of magnesium with calcite during crystal growth at 25–90 °C and one atmosphere. Geochim Cosmochim Acta 37:1563–1586

    Article  CAS  Google Scholar 

  • Kinsman DJJ (1969) Interpretation of Sr+2 concentrations in carbonate minerals and rocks. J Sediment Petrol 39:486–508

    CAS  Google Scholar 

  • Kinsman DJJ, Holland HD (1969) The co-precipitation of cations with CaCO3. IV. The co-precipitation of Sr2+ with aragonite between 16 and 96 °C. Geochim Cosmochim Acta 33:1–17

    Article  CAS  Google Scholar 

  • Kitano Y, Okumura M, Idogaki M (1978) Coprecipitation of borate-boron with calcium carbonate. Geochem J 12:183–189

    CAS  Google Scholar 

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    Google Scholar 

  • Lahann RW (1978) A chemical model for calcite crystal growth and morphology control. J Sediment Petrol 48:337–344

    CAS  Google Scholar 

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

    Google Scholar 

  • Marshall JF (2000) Decadal-scale, high resolution records of sea surface temperature in the eastern Indian and southwestern Pacific oceans from proxy records of the strontium/calcium ratio of massive Porites corals. Research School of Earth Sciences, The Australian National University, Canberra, pp 1–165

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280

    Article  CAS  Google Scholar 

  • McCulloch MT, Esat T (2000) The coral record of last interglacial sea levels and sea surface temperatures. Chem Geol 169:107–129

    Article  CAS  Google Scholar 

  • McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58(12):2747–2754

    CAS  Google Scholar 

  • McCulloch MT, Tudhope AW, Esat TM, Mortimer GE, Chappell J, Pillans B, Chivas AR, Omura A (1999) Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283:202–204

    Article  CAS  PubMed  Google Scholar 

  • McCulloch MT, Fallon SJ, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Science 421:727–730

    Article  CAS  Google Scholar 

  • Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim Cosmochim Acta 59:2025–2043

    Article  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963

    Article  CAS  PubMed  Google Scholar 

  • Mitterer RA (1978) Amino acid composition and metal binding capability of the skeletal protein of corals. Bull Mar Sci 28:173–180

    CAS  Google Scholar 

  • Oomori T, Kaneshima K, Nakamura Y, Kitano Y (1982) Seasonal variations of minor elements in coral skeletons. Galaxea 1:77–86

    CAS  Google Scholar 

  • Oomori T, Kaneshima H, Maezato Y (1987) Distribution coefficient of Mg2+ ions between calcite and solution at 10–50 °C. Mar Chem 20:327–336

    Article  CAS  Google Scholar 

  • Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. EOS Trans AGU 379

  • Quinn T, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeletal geochemistry. Paleoceanography 17:1062–1072

    Article  Google Scholar 

  • Rasmussen CE (1988) The use of strontium as an indicator of anthropogenically altered environmental parameters. In: 6th Int Coral Reef Symp 2:325–330

  • Schrag DP (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14:97–102

    Article  Google Scholar 

  • Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59:2009–2024

    Article  CAS  Google Scholar 

  • Shen GT, Sanford CL (1990) Trace element indicators of climate variability in reef-building corals. In: Glynn PW (ed) Global consequences of the 1982–83 El Nino-Southern Oscillation. Elsevier, New York, pp 255–283

  • Shen GT, Cole JE, Lea DW, Linn LJ, McConnaughey TA, Fairbanks RG (1992) Surface ocean variability at Galapagos from 1936–1982: calibration of geochemical tracers in corals. Paleoceanography 7:563–588

    Google Scholar 

  • Shen C-C, Lee T, Chen C-Y, Wang C-H, Dai C-F, Li L-A (1996) The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochim Cosmochim Acta 60:3849–3858

    Article  CAS  Google Scholar 

  • Sinclair DJ (1999) High-spatial resolution analysis of trace elements in corals using laser ablation ICP-MS. Research School of Earth Sciences, The Australian National University, Canberra, pp 1–414

  • Sinclair D, Kinsley L, McCulloch M (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901

    CAS  Google Scholar 

  • Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Mineral Soc Am, pp 145–190

  • Swart PK (1981) The strontium, magnesium and sodium composition of recent scleractinian coral skeletons as standards for palaeoenvironmental analysis. Palaeogeogr Palaeoclimatol Palaeoecol 34:115–136

    Article  CAS  Google Scholar 

  • Swart PK, Hubbard JAEB (1982) Uranium in scleractinian coral skeletons. Coral Reefs 1:13–19

    CAS  Google Scholar 

  • Thompson G, Livingston HD (1970) Strontium and uranium concentrations in aragonite precipitated by some modern corals. Earth Planet Sci Lett 8:439–442

    Article  CAS  Google Scholar 

  • Tudhope AW, Lea DW, Shimmield GB, Chilcott CP, Head S (1996) Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from Southern Oman. Palaios 11:347–361

    Google Scholar 

  • Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern carbonates. Geochim Cosmochim Acta 55:2901–2910

    Article  CAS  Google Scholar 

  • Walls RA, Ragland PC, Crisp EL (1977) Experimental and natural early diagenetic mobility of Sr and Mg in biogenic carbonates. Geochim Cosmochim Acta 41:1731–1737

    Article  CAS  Google Scholar 

  • Weber JN (1974) Skeletal chemistry of scleractinian reef corals: uptake of magnesium from seawater. Am J Sci 274:84–93

    CAS  Google Scholar 

  • Weber JN, Woodhead PM (1972) Temperature dependence of oxygen 18 concentration in reef coral carbonates. J Geophys Res 77:463–473

    CAS  Google Scholar 

  • Wei G, Sun M, Li X, Nie B (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeogr Palaeoclimatol Palaeoecol 162:59–74

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Marshall for fruitful lunchtime discussions, E. Hendy and D. Sinclair for help collecting the corals, and L. Kinsley for his help with LA-ICP-MS. We would also like to thank editor P. Swart and two anonymous reviewers for constructive criticism of the paper. S. Fallon was supported by OPRS and an Australian postgraduate award from the Australian National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart J. Fallon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallon, S.J., McCulloch, M.T. & Alibert, C. Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22, 389–404 (2003). https://doi.org/10.1007/s00338-003-0322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-003-0322-5

Keywords

Navigation