Skip to main content
Log in

Enhancing the selective separation of hemicelluloses from cellulosic fibers in NaOH/ZnO aqueous solution

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

To achieve a breakthrough in the application of cold caustic extraction, it is necessary to limit the amount of alkali and to dissolve the hemicelluloses sufficiently. A NaOH/ZnO aqueous solution system was used to separate hemicelluloses from bleached bamboo pulp efficiently and selectively. The NaOH/ZnO process proved to be more successful in the removal of hemicelluloses. Under the conditions of 0.5% ZnO concentration, the NaOH/ZnO aqueous solution system decreased the hemicelluloses content to 4.99%, which was lower than 7.46% of the control sample treated with NaOH alone at the same 7% NaOH concentration. Correspondingly, the NaOH/ZnO system led to an increase in alpha-cellulose content with significantly improved hemicelluloses removal efficiency and selectivity. As a result of the NaOH/ZnO process, a higher degree of polymerization was observed, and the cellulose I structure was always maintained, which provided good benefits for the subsequent utilization of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahsan L, Jahan MS, Ni Y (2014) Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process. Biores Technol 155C:111–115

    Article  Google Scholar 

  • Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod 65:565–571

    Article  CAS  Google Scholar 

  • Bian J, Peng F, Peng XP, Xiao X, Peng P, Xu F, Sun R (2014) Effect of [emim]ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohyd Polym 100:211–217

    Article  CAS  Google Scholar 

  • Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23(1):5–55

    Article  CAS  Google Scholar 

  • Bui HM, Lenninger M, Manian AP, Aburous M, Schimper C, Schuster KC, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fiber reactivity—Part 2. Access React Macromolecular Symp 262(1):50–64

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548

    Article  CAS  PubMed  Google Scholar 

  • Cantero DA, Tapia AS, Bermejo MD, Cocero MJ (2015) Pressure and temperature effect on cellulose hydrolysis in pressurized water. Chem Eng J 276:145–154

    Article  CAS  Google Scholar 

  • Chen Q, Wang X, Huang H, Cao S, Chen L, Huang L, Ma X (2021) Turkey Red oil—an effective alkaline extraction booster for enhanced hemicelluloses separation from bamboo kraft pulp and improved fock reactivity of resultant dissolving pulp. Ind Crops Prod 145:112127

    Article  Google Scholar 

  • Christopher L (2012) Adding value prior to pulping: bioproducts from hemicellulose. InTech, pp 225–246

  • Davidson GF (1937) The dissolution of chemically modified cotton cellulose in alkaline solution. Part III: in solution of sodium and potassium hydroxide containing dissolved zinc, béryllium and aluminum oxides. J Text Inst 28(2):27–44

  • Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20(6):667–673

    Article  CAS  Google Scholar 

  • Deshpande R (2016) The initial phase of sodium sulfite pulping of softwood: a comparison of different pulping options, Doctoral Thesis, Karlstad University, Karlstad, Sweden

  • Fan S, Wen B, Su Z, Zhang Y (2017) The research progress of upgrading paper-grade pulp to dissolving pulp. China Pulp Pap 36(3):64–68

    Google Scholar 

  • Fu F, Guo Y, Wang Y, Tan Q, Zhou J, Zhang L (2014) Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose 21(4):2819–2830

    Article  CAS  Google Scholar 

  • FZ/T 50010.3 (2011) Pulp board for viscose fiber—determination of viscosity. China National Standards Press, Beijing

  • Gehmayr V, Sixta H (2012) Pulp properties and their influence on enzymatic degradability. Biomacromol 13(3):645

    Article  CAS  Google Scholar 

  • Groönqvist S, Hakala T, Kamppuri T, Vehvilainen M, Hanninen T, Liitia T, Maloney T, Suurnakki A (2014) Fibre porosity development of dissolving pulp during mechanical and enzymatic processing. Cellulose 21(5):3667–3676

    Article  Google Scholar 

  • Groönqvist S, Kamppuri T, Maloney T, Vehvilainen M, Liitia T, Suurnakki A (2015) Enhanced pre-treatment of cellulose pulp prior to dissolution into NaOH/ZnO. Cellulose 22(6):3981–3990

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney W, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  • Ibarra D, Kopcke V, Larsson PT, Jaaskelainen AS, Ek M (2010) Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving grade pulp. Biores Technol 101(19):7416–7423

    Article  CAS  Google Scholar 

  • Jacobs A, Dahlman O (2001) Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biomacromol 2(3):894–905

    Article  CAS  Google Scholar 

  • Jahan MS, Ahsan L, Noori A, Quaiyyum MA (2008) Process for the production of dissolving pulp from trema orientalis (Nalita) by prehydrolysis kraft and soda-ethylenediamine (EDA) process. BioResources 3(3):816–828

    Google Scholar 

  • Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18(2):451–459

    Article  CAS  Google Scholar 

  • Janzon R, Puls J, Potthast A, Bohn A, Saake B (2008) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps. Cellulose 15(5):739–750

    Article  CAS  Google Scholar 

  • Kihlman M, Medronho B, Romano A, Germgard U, Lindman B (2013) Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments. J Braz Chem Soc 24(2):295–303

    Article  CAS  Google Scholar 

  • Kim CH, Lee J, Treasure T, Skotty J, Floyd T, Kelley SS, Park S (2019) Alkaline extraction and characterization of residual hemicellulose in dissolving pulp. Cellulose 26(2):1323–1333

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Duan C, Zhang H, Ni Y (2015) Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Biores Technol 192:501–506

    Article  CAS  Google Scholar 

  • Li J, Ma X, Duan C, Liu Y, Zhang H, Ni Y (2016) Enhanced removal of hemicelluloses from cellulosic fibers by poly(ethylene glycol) during alkali treatment. Cellulose 23(1):231–238

    Article  Google Scholar 

  • Li J, Hu H, Li H, Huang L, Chen L, Ni Y (2017) Kinetics and mechanism of hemicelluloses removal from cellulosic fibers during the cold caustic extraction process. Biores Technol 234:61–66

    Article  CAS  Google Scholar 

  • Li J, Liu X, Zheng Q, Chen L, Huang L, Ni Y, Ouyang X (2019) Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose 26(11):6393–6400

    Article  CAS  Google Scholar 

  • Liu Y, Piron DL (1998) Study of tin cementation in alkaline solution. J Electrochem Soc 145(1):186–190

    Article  CAS  Google Scholar 

  • Liu W, Budtova T, Navard P (2011a) Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18(4):911–920

    Article  CAS  Google Scholar 

  • Liu X, Fatehi P, Ni Y (2011b) Adsorption of lignocelluloses dissolved in prehydrolysis liquor of kraft-based dissolving pulp process on oxidized activated carbons. Ind Eng Chem Res 50(20):11706–11711

    Article  CAS  Google Scholar 

  • Liu Y, Liu Y, Wang Z, Peng J (2014) Alkaline hydrolysis kinetics modeling of bagasse pentosan dissolution. BioResources 9(1):445–454

    CAS  Google Scholar 

  • Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH-Thiourea aqueous system at low temperature. Macromol Chem Phys 208(21):2359–2366

    Article  CAS  Google Scholar 

  • Ma X, Yang X, Zheng X, Lin L, Chen L, Huang L, Cao S (2014) Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Biores Technol 161:215–220

    Article  CAS  Google Scholar 

  • Medronho B, Lindman B (2015) Brief overview on cellulose dissolution and regeneration interactions and mechanisms. Adv Colloid Interfac 222:502–508

    Article  CAS  Google Scholar 

  • Mikolajczyk W, Struszczyk H, Urbanowski A, Wawro D, Starostka P (2002) Process for producing fibres, film, casings and other products from modified soluble cellulose. Poland, Patent WO 02/22924

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youke JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  PubMed  Google Scholar 

  • Popescu CM, Larsson PT, Olaru N, Vasile C (2012) Spectroscopic study of acetylated kraft pulp fibers. Carbohyd Polym 88(2):530–536

    Article  CAS  Google Scholar 

  • Quintana, Valls C, Vidal T, Roncero MB (2015) Comparative evaluation of the action of two different endoglucanases. Part I: on a fully bleached, commercial acid sulfite dissolving pulp. Cellulose 22(3):2067–2079

  • Rahkammo L, Viikari L, Buchert J, Paakkari T, Suortti T (1998) Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose 5:79–88

    Article  Google Scholar 

  • Reichle RA, Mccurdy KG, Hepler LG (1975) Zinc Hydroxide: Solubility Product and Hydroxy-complex Stability Constants from 12.5–75 °C. Can J Chem 53(24):3841–3845

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  PubMed  Google Scholar 

  • Schild G, Sixta H (2011) Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18(4):1113–1128

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shi Z, Yang Q, Cai J, Kuga S, Matsumoto Y (2014) Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution. Cellulose 21(3):1205–1215

    Article  CAS  Google Scholar 

  • Sixta H (2006) Pulp properties and applications. In: Sixta H (ed) Handbook of Pulp, vol 2. Wiley-VCH, Weinheim, pp 1022–1062

    Chapter  Google Scholar 

  • Sorrell S, Speirs J, Bentley R, Brandt AR, Miller R (2010) Global oil depletion: a review of the evidence. Energy Policy 38(9):5290–5295

    Article  Google Scholar 

  • Väisänen S, Ajdary R, Altgen M, Nieminen K, Kesari KK, Ruokolainen J, Rojas JO, Vuorinen T (2021) Cellulose dissolution in aqueous NaOH–ZnO: cellulose reactivity and the role of ZnO. Cellulose 28(3):1267–1281

    Article  Google Scholar 

  • Wang Q, Liu S, Yang G, Chen J, Ni Y (2015a) Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp. Biores Technol 183:42–46

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Yang G, Chen J, Ni Y (2015b) High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp. Biores Technol 189:413–416

    Article  CAS  Google Scholar 

  • Wawro D, Steplewski W, Bodek A (2009) Manufacture of cellulose fibres from alkaline solutions of hydrothermally-treated cellulose pulp. Fibres Textiles Eastern Euro 17(3):74

    Google Scholar 

  • Wollboldt P, Strach M, Russler A, Jankova S, Sixta H (2017) Upgrading of commercial pulps to high-purity dissolving pulps by an ionic liquid-based extraction method. Holzforschung 71(7–8):611–618

    Article  CAS  Google Scholar 

  • Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohyd Polym 83(3):1185–1191

    Article  CAS  Google Scholar 

  • Yang B, Zhang S, Hu H, Duan C, He Z, Ni Y (2020) Separation of hemicellulose and cellulose from wood pulp using a γ-valerolactone (GVL)/water mixture. Sep Purif Technol 248:117071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Natural Science Foundation of China (Grant No. 3177063) and Fujian Provincial Department of Science and Technology (Grant No. 2021H6005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liulian Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Ma, X., Li, J. et al. Enhancing the selective separation of hemicelluloses from cellulosic fibers in NaOH/ZnO aqueous solution. Wood Sci Technol 57, 375–387 (2023). https://doi.org/10.1007/s00226-022-01437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-022-01437-3

Navigation