Skip to main content
Log in

Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The influence of ZnO as cellulose-8%NaOH-water solution stabilizer against gelation is studied. Cellulose intrinsic viscosity in 8%NaOH-water as a function of solution temperature is investigated in the presence and absence of ZnO. The addition of ZnO did not bring any improvement in terms of solvent thermodynamic quality. Non-dissolved ZnO particles were observed above 0.8–0.9% ZnO in 8%NaOH-water. Gelation of cellulose-8%NaOH solutions with and without ZnO are studied for various cellulose and ZnO concentrations (4–6% and 0–1.5%, respectively) in a wide range of temperatures (−5 °C to 50 °C). Gelation times were exponentially increasing with increasing ZnO concentration and with decreasing cellulose concentration and solution temperature. Gelation times of cellulose-NaOH-water-ZnO systems were found to follow a semi-empirical model correlating these three parameters. We suggest that ZnO is acting as water molecular “binder” stabilizing cellulose-NaOH-water solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bang YH, Lee S, Park JB, Cho HH (1999) Effect of coagulation conditions on fine structure of regenerated cellulosic films made from cellulose/N-methylmorpholine-N-oxide/H2O systems. J Appl Polym Sci 73:2681–2690

    Article  CAS  Google Scholar 

  • Burchard W, Habermann N, Klufers P, Seger B, Wilhelm U (1994) Cellulose in Schweizer’s reagent—a stable, polymeric metal-complex with high chain stiffness. Angew Chem Int Ed Engl 33:884–887

    Article  Google Scholar 

  • Cai J, Zhang LN (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Zhang LN, Zhou JP, Li H, Chen H, Jin HM (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Comm 25:1558–1562

    Article  CAS  Google Scholar 

  • Ciechańska D, Wesolowska E, Wawro D (2009) An introduction to cellulose fibres. In: Eichhorn S, Hearle JWS, Jaffe M, Kikutani T (eds) Handbook of textile fibre structure, vol 2: natural, regenerated, inorganic and specialist fibres. Woodhead Publishing, Cambridge, pp 3–61

    Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose Part II: free floating cotton and wood fibres in NaOH-water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Davidson GF (1937) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part III: in solutions of sodium and potassium hydroxyde containing dissolved zinc, béryllium and aluminium oxides. J Text Inst 28:27–44

    Article  Google Scholar 

  • Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20:667–673

    Article  CAS  Google Scholar 

  • Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. PhD thesis, Ecole Nationale Supérieure des Mines de Paris

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0°C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Fischer S, Leipner H, Thummler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  • Frey MW, Cuculo JA, Khan SA (1996) Rheology and gelation of cellulose/ammonia/ammonium thiocyanate solutions. J Polym Sci Part B Polym Phys 34:2375–2381

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  CAS  Google Scholar 

  • Hu JH, Gordon RG (1992) Textured aluminum doped zinc oxide thin films from atmospheric pressure chemical vapor deposition. J Appl Phys 71:880–890

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and C-13 NMR. Polym J 16:857–866

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution–role of super-molecular structure of cellulose. Polym J 24:71–86

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1. Fundamentals and analytical methods. Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 260 p

  • Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  • Kuo YN, Hong J (2005) Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym Adv Technol 16:425–428

    Article  CAS  Google Scholar 

  • Liu Y, Piron DL (1998) Study of tin cementation in alkaline solution. J Electrochem Soc 145:186–190

    Article  CAS  Google Scholar 

  • Mao Y, Zhou JP, Cai J, Zhang LN (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membrane Sci 279:246–255

    Article  CAS  Google Scholar 

  • Matsui T, Sano T, Yamane C, Kamide K, Okajima K (1995) Structure and morphology of cellulose films coagulated from novel cellulose/aqueous sodium-hydroxide solutions by using aqueous sulphuric-acid with various concentrations. Polym J 27:797–812

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 9:2394–2401

    Article  Google Scholar 

  • Mikolajczyk W, Struszczyk H, Urbanowski A, Wawro D, Starostka P (2002) Process for producing fibres, film, casings and other products from modified soluble cellulose. Poland, Patent WO 02/22924

  • te Nijenhuis K (1997) Thermoreversible networks: viscoelastic properties and structure of gels. Springer, Berlin

  • Ramos LA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohyd Polym 60:259–267

    Article  CAS  Google Scholar 

  • Reichle RA, McCurdy KG, Hepler LG (1975) Zinc hydroxide–solubility product and hydroxyl–complex stability-constants from 12.5 to 75 °C. Can J Chem 53:3841–3845

    Article  CAS  Google Scholar 

  • Ross-Murphy SB (1991) Concentration dependence of gelation time. In: Dickinson E (ed) Food polymers. Gels and colloids. Royal Society of Chemistry, Cambridge, pp 357–368

    Chapter  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228

    Article  CAS  Google Scholar 

  • Sobue H, Kiessig H, Hess KZ (1939) The cellulose-sodium hydroxide-water system as a function of the temperature. Physik Chem B 43:309–328

    Article  Google Scholar 

  • Stupinska H, Iller E, Zimek Z, Wawro D, Ciechańska D, Kopania E, Palenik J, Milczarek S, Steplewski W, Krzyanowska G (2007) An environment-friendly method to prepare microcrystalline cellulose. Fibres Text East Eur 15:167–172

    CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384

    Article  CAS  Google Scholar 

  • Vehvilainen M, Kamppuri T, Rom M, Janicki J, Ciechańska D, Gronqvist S, Siika-Aho M, Christoffersson KE, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680

    Article  Google Scholar 

  • Wilkes AG (2001) The viscose process. In: Woodings C (ed) Regenerated cellulose fibres. Woodhead Publishing, Cambridge, pp 37–61

    Chapter  Google Scholar 

  • Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang LN (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohyd Polym 83:1185–1191

    Article  CAS  Google Scholar 

  • Zhang LN, Ruan D, Zhou JP (2001a) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution. Ind Eng Chem Res 40:5923–5928

    Article  CAS  Google Scholar 

  • Zhang YP, Shao H, Wu CX, Hu XC (2001b) Formation and characterization of cellulose membranes from N-methylmorpholine-N-oxide solution. Macromol Biosci 1:141–148

    Article  CAS  Google Scholar 

  • Zhang LN, Ruan D, Gao SJ (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part B Polym Phys 40:1521–1529

    Article  CAS  Google Scholar 

  • Zhou JP, Zhang L, Cai J, Shu H (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membrane Sci 210:77–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 214653. W.L. thanks Dr. Nicolas Le Moigne and Kim-Anh Le for help with rheological measurement and for fruitful discussions, and Liu Zhigang for sharing his knowledge and providing advices on nonlinear curve fitting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Budtova or Patrick Navard.

Additional information

CEMEF—Member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Budtova, T. & Navard, P. Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18, 911–920 (2011). https://doi.org/10.1007/s10570-011-9552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9552-9

Keywords

Navigation