Skip to main content
Log in

Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Thermal modification of wood is an effective method to improve some of the properties of wood. It is reported on studies of vacuum thermal-treated wood species by magnetic resonance methods. Wood species such as Scots pine (Pinus sylvestris), birch (Betula pendula), Russian larch (Larix sibirica), Norway spruce (Picea abies), small-leaved lime (Tilia cordata) were vacuum treated by heat at 220 °C with various durations up to 8 h. This selection of wood species was investigated by electron paramagnetic resonance, nuclear magnetic resonance and microscopy methods before and after the thermal treatment. Electron paramagnetic resonance experiments revealed changes in the amount of free radicals in samples with the thermal treatment duration. Additional information on magnetic relaxation of 1H nuclei in samples at room temperature was obtained. Optical microscope analysis helped to detect structural changes in the thermally modified wood. Important properties of wood such as wood hardness and humidity absorption were also studied. The original results that were obtained correlate and complement each other, and clarify changes in the wood structure that appear with the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahajji A, Diouf PN, Aloui F, Elbakali I, Perrin D, Merlin A, George B (2009) Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives. Wood Sci Technol 43(1–2):69–83

    Article  CAS  Google Scholar 

  • Alakshin EM, Gazizulin RR, Klochkov AV, Kuzmin VV, Sabitova AM, Safin TR, Tagirov MS (2013) The home-built pulse nuclear magnetic resonance spectrometer with digital quadrature detection for 3He research at low temperatures. Magn Reson Solids 15(1):13104

    Google Scholar 

  • Allegretti O, Brunetti M, Cuccui I, Ferrari S, Nocetti M, Terziev N (2012) Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResour 7(3):3656–3669

    CAS  Google Scholar 

  • Altgen M, Welzbacher C, Humar M, Willems W, Militz H (2012) Bestimmung der Behandlungsqualität von Thermoholz mithilfe von Schnellverfahren; Teil 1: Elektronenspin-Resonanz-Spektroskopie (Determination of the treatment quality of thermally modified wood by means of rapid methods; Part 1: ESR-spectroscopy) (In German) Holztechnologie 53(6):44–49

  • Ates S, Akyildiz MH, Ozdemir H (2009) Effects of heat treatment on calabrian pine (Pinus brutia Ten.) wood. BioResour 4(3):1032–1043

    CAS  Google Scholar 

  • Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7):679–690

    Article  Google Scholar 

  • Brai M, Longo A, Maccotta A, Marrale M (2009) Electronic paramagnetic resonance power saturation of wooden samples. J Appl Phys 105(9):094913

    Article  Google Scholar 

  • Deka M, Humar M, Rep G, Kricej B, Sentjurc M, Petric M (2008) Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies. Wood Sci Technol 42(1):5–20

    Article  CAS  Google Scholar 

  • Doi S, Kurimoto Y, Ohmura W, Ohara S, Aoyama M, Yoshimura T (1999) Effects of heat treatments of wood on the feeding behaviour of two subterranean termites. Holzforschung 53(3):225–229

    Article  CAS  Google Scholar 

  • Eberhardt TL, Elder T, Labbe N (2007) Analysis of ethanol-soluble extractives in southern pine wood by low-field proton NMR. J Wood Chem Technol 27(1):35–47

    Article  CAS  Google Scholar 

  • Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResour 4(1):370–404

    CAS  Google Scholar 

  • Esteves B, Domingos I, Pereira H (2007) Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200 degrees C. For Prod J 57(1–2):47–52

    Google Scholar 

  • Esteves B, Domingos I, Pereira H (2008) Pine wood modification by heat treatment in air. BioResour 3(1):142–154

    CAS  Google Scholar 

  • Gilardi G, Abis L, Cass AE (1994) Wide-line solid-state NMR of wood: proton relaxation time measurements on cell walls biodegraded by white-rot and brown-rot fungi. Enzyme Microb Technol 16(8):676–682

    Article  CAS  Google Scholar 

  • Gündüz G, Niemz P, Aydemir D (2008) Changes in specific gravity and equilibrium moisture content in heat-treated fir (Abies nordmanniana subsp. bornmülleriana Mattf.) wood. Dry Technol 26(9):1135–1139

    Article  Google Scholar 

  • Hietala S, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56(5):522–528

    Article  CAS  Google Scholar 

  • Hill CA (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz Roh-Werkst 58(1-2):91–95

    Article  Google Scholar 

  • Hon DNS, Ifju G, Feist WC (1980) Characteristics of free radicals in wood. Wood Fiber 12(2):121–130

    CAS  Google Scholar 

  • Hon DS, Chang ST, Feist WC (1982) Participation of singlet oxygen in the photodegradation of wood surfaces. Wood Sci Technol 16(3):193–201

    Article  CAS  Google Scholar 

  • Humar M, Petrič M, Šentjurc M (2001) Influence of moisture content on EPR parameters of copper in impregnated wood. Holz Roh Werkst 59(4):254–255

    Article  CAS  Google Scholar 

  • Humar M, Petrič M, Pohleven F, Šentjurc M, Kalan P (2002) Changes of EPR spectra of wood impregnated with copper-based preservatives during exposure to several wood-rotting fungi. Holzforschung 56(3):229–238

    Article  CAS  Google Scholar 

  • Humar M, Bokan M, Amartey SA, Šentjurc M, Kalan P, Pohleven F (2004) Fungal bioremediation of copper, chromium and boron treated wood as studied by electron paramagnetic resonance. Int Biodeterior Biodegrad 53(1):25–32

    Article  CAS  Google Scholar 

  • Humar M, Straze A, Šentjurc M, Pohleven F (2006) Influence of wood moisture content on the intensity of free radicals EPR signal. Holz Roh Werkst 64(6):515–516

    Article  CAS  Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh Werkst 60(1):1–6

    Article  CAS  Google Scholar 

  • Kluzina SI, Mikhailov AI (1990) Oxidation of macroradicals in celluloses and cellulose nitrate. Polym Sci USSR 32(4):619–625

    Article  Google Scholar 

  • Košíková B, Hricovini M, Cosentino C (1999) Interaction of lignin and polysaccharides in beech wood (Fagus sylvatica) during drying processes. Wood Sci Technol 33(5):373–380

    Article  Google Scholar 

  • Kuzina SI, Brezgunov AY, Dubinskii AA, Mikhailov AI (2004) Free radicals in the photolysis and radiolysis of polymers: IV. Radicals in γ-and UV-irradiated wood and lignin. High Energy Chem +  38(5):298–305

    Article  CAS  Google Scholar 

  • Liping C, Shijie H, Weiping D, Manrong J (1992) Chemical and physical changes of steam treated wood chip. J Northeast For Univ 4(1):48–52

    Google Scholar 

  • Luostarinen K, Mottonen V, Asikainen A, Luostarinen J (2002) Birch (Betula pendula) wood discolouration during drying. Effect of environmental factors and wood location in the trunk. Holzforschung 56(4):348–354

    Article  CAS  Google Scholar 

  • Maunu SL (2002) NMR studies of wood and wood products. Prog Nucl Magn Reson Spectrosc 40(2):151–174

    Article  CAS  Google Scholar 

  • Menon RS, MacKay AL, Hailey JRT, Bloom M, Burgess AE, Swanson JS (1987) An NMR determination of the physiological water distribution in wood during drying. J Appl Polym Sci 33(4):1141–1155

    Article  CAS  Google Scholar 

  • O’Brien FEM (1948) The control of humidity by saturated salt solutions. J Sci Instrum 25(3):73

    Article  Google Scholar 

  • Ogiwara Y, Hon NS, Kubota H (1974) ESR studies of photoirradiated cellulose on radical formation and decay. J Appl Polym Sci 18(7):2057–2068

    Article  CAS  Google Scholar 

  • Oniki T (1998) Origin of free radicals produced from the syringyl end groups in lignins. J Wood Sci 44(4):314–319

    Article  CAS  Google Scholar 

  • Peemoeller H, Weglarz WP, Hinek MJ, Holly R, Lemaire C, Teymoori R, Liang J, Crone J, Mansour FK, Hartley ID (2013) NMR detection of liquid-like wood polymer component in dry aspen wood. Polymer 54(5):1524–1529

    Article  CAS  Google Scholar 

  • Petrissans M, Gerardin P, Serraj M (2003) Wettability of heat-treated wood. Holzforschung 57(3):301–307

    Article  CAS  Google Scholar 

  • Pires LF, Borges FS, Passoni S, Pereira AB (2013) Soil pore characterization using free software and a portable optical microscope. Pedosphere 23(4):503–510

    Article  Google Scholar 

  • Riggin MT, Sharp AR, Kaiser R, Schneider MH (1979) Transverse NMR relaxation of water in wood. J Appl Polym Sci 23(11):3147–3154

    Article  CAS  Google Scholar 

  • Sandoval-Torres S, Jomaa W, Marc F, Puiggali JR (2012) Colour alteration and chemistry changes in oak wood (Quercus pedunculata Ehrh) during plain vacuum drying. Wood Sci Technol 46(1–3):177–191

    Article  CAS  Google Scholar 

  • Shi JL, Kocaefe D, Zhang J (2007) Mechanical behaviour of Quebec wood species heat-treated using thermo wood process. Holz Roh Werkst 65(4):255–259

    Article  Google Scholar 

  • Simpson W, TenWolde A (1999) Physical properties and moisture relations of wood. In: Wood handbook: wood as an engineering material. Madison, WI : USDA Forest Service, Forest Products Laboratory pp 3.1–3.24

  • Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648–654

    Article  CAS  Google Scholar 

  • Steelink C (1966) Stable free radicals in lignin and lignin degradation products. Adv Chem Ser 59(1):51–64

    Article  Google Scholar 

  • Terziev N, Daniel G (2002) Industrial kiln drying and its effect on microstructure, impregnation and properties of Scots pine timber impregnated for above ground use. Part 2. Effect of drying on microstructure and some mechanical properties of Scots pine wood. Holzforschung 56(4):434–439

    CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149–153

    Article  CAS  Google Scholar 

  • Viitaniemi P, Jamsa S, Sundholm F (2001) Method of determining the degree of modification of a heat modified woodproduct. Patent Appl. WO01/53812 A1

  • Willems W, Lykidis C, Altgen M, Clauder L (2015) Quality control methods for thermally modified wood. Holzforschung 69(7):875–884

    Article  CAS  Google Scholar 

  • Zauer M, Meissner F, Plagge R, Wagenführ A (2015) Capillary pore-size distribution and equilibrium moisture content of wood determined by means of pressure plate technique. Holzforschung. doi:10.1515/hf-2014-0340

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to S.B. Orlinskii and T.M. Salikhov for the valuable help. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kajum Safiullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyeva, E., Safiullin, K., Motygullin, I. et al. Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods. Wood Sci Technol 50, 895–916 (2016). https://doi.org/10.1007/s00226-016-0825-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0825-1

Keywords

Navigation