Skip to main content
Log in

First-principles calculations on the micro-solvation of 3d-transition metal ions: solvation versus splitting water

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Molecular level understanding of 3d-transition metal interaction with water molecules in various electronic states is of fundamental significance in chemistry and biology. This study systematically presents the propensity of 3d-transition metals in their variable electronic and spin states towards solvation and splitting water molecules. The topological analysis affirmed that neutral and mono-cationic complexes are prone to be partially covalent in nature from moving low to high spin states; however, coordinate bonding is observed in di- and tri-cationic ion–water complexes. Potential energy surface analysis showed a profound influence of electronic states of 3d-transition metals on the relative feasibility of bond scission and solvation competing pathways. The early neutral, high spin mono-cationic, and di-cationic transition metals prefer solvation over splitting the water molecule. Similarly, mid- and late-transition metal ions in the first two electronic states, irrespective of the spin state, show higher preferences towards solvation. In contrast, neutral and tri-cationic ions tend to form either insertion complexes, hydroxides, or hydrides over the ion–water complexes, suggesting a preference to split the water molecule. Thus, tuning the electronic and micro-environment will help in the design of transition metals catalysts for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armentrout PB (1990) Electronic state-specific metal ion chemistry. Annu Rev Phys Chem 41:313–344

    Article  CAS  Google Scholar 

  2. Williams RJP (1968) Role of transition metal ions in biological processes. R Inst Chem Rev 1:13–38

    Article  Google Scholar 

  3. Armentrout PB, Beauchamp JL (1989) The chemistry of atomic transition-metal ions: insight into fundamental aspects of organometallic chemistry. Acc Chem Res 22:315–321

    Article  CAS  Google Scholar 

  4. Armentrout PB (1991) Chemistry of excited electronic states. Science 251:175–179

    Article  CAS  PubMed  Google Scholar 

  5. Poli R (1996) Open-shell organometallics as a bridge between Werner-type and low-valent organometallic complex. The effect of the spin state on the stability, reactivity, and structure. Chem Rev 96:2135–2204

    Article  CAS  PubMed  Google Scholar 

  6. Harvey J, Poli R, Smith KM (2003) Understanding the reactivity of transition metal complexes involving multiple spin states. Coord Chem Rev 238:347–361

    Article  Google Scholar 

  7. Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L, Truhlar DG (2017) Assessment of electronic structure methods for the determination of the ground spin states of Fe (II), Fe (III) And Fe (IV) complexes. Phys Chem Chem Phys 19:13049–13069

    Article  CAS  PubMed  Google Scholar 

  8. Ashley DC, Jakubikova E (2017) Ironing out the photochemical and spin-crossover behavior of Fe (II) coordination compounds with computational chemistry. Coord Chem Rev 337:97–111

    Article  CAS  Google Scholar 

  9. Kumar N, Kumar YB, Sarma H, Sastry GN (2021) Fate of Sc-ion interaction with water: a computational study to address splitting water versus solvating Sc ion. Front Chem 9:738852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dalleska NF, Honma K, Sunderlin LS, Armentrout PB (1994) Solvation of transition metal ions by water. Sequential binding energies of M+(H2O)x (x = 1–4) for M = Ti to Cu determined by collision-induced dissociation. J Am Chem Soc 116:3519–3528

    Article  CAS  Google Scholar 

  11. Trachtman M, Markham GD, Glusker JP, George P, Bock CW (1998) Interactions of metal ions with water: ab initio molecular orbital studies of structure, bonding enthalpies, vibrational frequencies and charge distributions. 1. Monohydrates. Inorg Chem 37:4421–4431

    Article  CAS  PubMed  Google Scholar 

  12. Magnera TF, David DE, Michl J (1989) Gas-phase water and hydroxyl binding energies for monopositive first-row transition metal ions. J Am Chem Soc 111:4100–4101

    Article  CAS  Google Scholar 

  13. Chen YM, Clemmer DE, Armentrout PB (1994) Kinetic and electronic energy dependence of the reactions of Sc+ and Ti+ with D2O. J Phys Chem 98:11490–11498

    Article  CAS  Google Scholar 

  14. Cheng P, Koyanagi GK, Bohme DK (2007) Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity. J Phys Chem A 111:8561–8573

    Article  CAS  PubMed  Google Scholar 

  15. Chiodo S, Kondakova O, Michelini MD, Russo N, Sicilia E, Irigoras A, Ugalde JM (2004) Theoretical study of two-state reactivity of transition metal cations: the “difficult” case of iron ion interacting with water, ammonia, and methane. J Phys Chem A 108:1069–1081

    Article  CAS  Google Scholar 

  16. Andric JM, Misini-Ignjatovic MZ, Murray JS, Politzer P, Zaric SD (2016) Hydrogen bonding between metal-ion complexes and noncoordinated water: electrostatic potentials and interaction energies. ChemPhysChem 17:2035–2042

    Article  CAS  PubMed  Google Scholar 

  17. Vega AS, Rocha-Rinza T, Guevara-Vela JM (2021) Cooperativity and anticooperativity in ion–water interactions: implications for the aqueous solvation of ions. ChemPhysChem 22:1269–1285

    Article  Google Scholar 

  18. Costas M, Harvey JN (2013) Discussion of an open problem. Nat Chem 5:7–9

    Article  CAS  PubMed  Google Scholar 

  19. Marinelli PJ, Squires RR (1989) Sequential solvation of atomic transition-metal ions. The second solvent molecule can bind more strongly than the first. J Am Chem Soc 111:4101–4103

    Article  CAS  Google Scholar 

  20. Blagojevic V, Koyanagi GK, Böhme DK (2023) Probing gas phase catalysis by atomic metal cations with flow tube mass spectrometry. Mass Spectrom Rev. https://doi.org/10.1002/mas.21831

    Article  PubMed  Google Scholar 

  21. Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA (2018) Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem Rev 119:2453–2523

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boehme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed 44:2336–2354

    Article  CAS  Google Scholar 

  23. Irigoras A, Elizalde O, Silanes I, Fowler JE, Ugalde JM (2000) Reactivity of Co+ (3F, 5F), Ni+ (2D, 4F), and Cu+ (1S, 3D): reaction of Co+, Ni+, and Cu+ with water. J Am Chem Soc 122:114–122

    Article  CAS  Google Scholar 

  24. Irigoras A, Fowler JE, Ugalde JM (1998) On the reactivity of Ti+ (4F, 2F). Reaction of Ti+ with OH2. J Phys Chem A 102:293–300

    Article  CAS  Google Scholar 

  25. Irigoras A, Fowler JE, Ugalde JM (1999) Reactivity of Cr+ (6S, 4D), Mn+ (7S, 5S), and Fe+ (6D, 4F): reaction of Cr+, Mn+, and Fe+ with water. J Am Chem Soc 121:8549–8558

    Article  CAS  Google Scholar 

  26. Irigoras A, Fowler JE, Ugalde JM (1999) Reactivity of Sc+ (3D, 1D) and V+ (5D, 3F): reaction of Sc+ and V+ with water. J Am Chem Soc 121:574–580

    Article  CAS  Google Scholar 

  27. Kauffman JW, Hauge RH, Margrave JL (1985) Studies of reactions of atomic and diatomic chromium, manganese, iron, cobalt, nickel, copper, and zinc with molecular water at 15 K. J Phys Chem 89:3541–3547

    Article  CAS  Google Scholar 

  28. Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ (2021) Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem Rev 121:9927–10000

    Article  CAS  PubMed  Google Scholar 

  29. Rosi M, Bauschlicher CW Jr (1989) The binding energies of one and two water molecules to the first transition-row metal positive ions. J Chem Phys 90:7264–7272

    Article  CAS  Google Scholar 

  30. Mo O, Yanez M, Salpin JY, Tortajada J (2007) Thermochemistry, bonding, and reactivity of Ni+ and Ni2+ in the gas phase. Mass Spectrom Rev 26:474–516

    Article  CAS  PubMed  Google Scholar 

  31. Russo N, Sicilia E (2001) Reaction of Sc+ (1D, 3D) with H2O, NH3, and CH4: a density functional study. J Am Chem Soc 123:2588–2596

    Article  CAS  PubMed  Google Scholar 

  32. Ye S (1997) Theoretical Study of the dehydrogenation reaction of water by Sc+. J Mol Struct Theochem 417:157–162

    Article  CAS  Google Scholar 

  33. Clemmer DE, Chen YM, Aristov N, Armentrout PB (1994) Kinetic and electronic energy dependence of the reaction of V+ with D2O. J Phys Chem A 98:7538–7544

    CAS  Google Scholar 

  34. Neela YI, Mahadevi AS, Sastry GN (2013) First principles study and database analyses of structural preferences for sodium ion (Na+) solvation and coordination. Struct Chem 24:67–79

    Article  CAS  Google Scholar 

  35. Neela YI, Mahadevi AS, Sastry GN (2013) Analyzing coordination preferences of Mg2+ complexes: insights from computational and database study. Struct Chem 24:637–650

    Article  CAS  Google Scholar 

  36. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775–2825

    Article  CAS  PubMed  Google Scholar 

  37. Mahadevi AS, Sastry GN (2013) Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138

    Article  CAS  PubMed  Google Scholar 

  38. Kumar N, Saha S, Sastry GN (2021) Towards developing a criterion to characterize non-covalent bonds: a quantum mechanical study. Phys Chem Chem Phys 23:8478–8488

    Article  CAS  PubMed  Google Scholar 

  39. Saha S, Sastry GN (2015) Cooperative or anticooperative: how noncovalent interactions influence each other. J Phys Chem B 119:11121–11135

    Article  CAS  PubMed  Google Scholar 

  40. Saha S, Sastry GN (2015) Quantifying cooperativity in water clusters: an attempt towards obtaining a generalised equation. Mol Phys 113:3031–3041

    Article  CAS  Google Scholar 

  41. Kumar N, Gaur AS, Sastry GN (2021) A perspective on the nature of cation–π interactions. J Chem Sci 133:1–3

    Article  Google Scholar 

  42. Mahadevi AS, Sastry GN (2014) Modulation of hydrogen bonding upon ion binding: insights into cooperativity. Int J Quan Chem 114:145–153

    Article  Google Scholar 

  43. Neela YI, Mahadevi AS, Sastry GN (2010) Hydrogen bonding in water clusters and their ionized counterparts. J Phys Chem B 114:17162–17171

    Article  CAS  PubMed  Google Scholar 

  44. Rao JS, Dinadayalane TC, Leszczynski J, Sastry GN (2008) Comprehensive study on the solvation of mono- and divalent metal cations: Li+, Na+, K+, Be2+, Mg2+ and Ca2+. J Phys Chem A 112:12944–12953

    Article  CAS  PubMed  Google Scholar 

  45. Sharma B, Neela YI, Sastry GN (2016) Structures and energetics of complexation of metal ions with ammonia, water, and benzene: a computational study. J Comput Chem 37:992–1004

    Article  CAS  PubMed  Google Scholar 

  46. Sharma B, Rao JS, Sastry GN (2011) Effect of solvation on ion binding to imidazole and methylimidazole. J Phys Chem A 115:1971–1984

    Article  CAS  PubMed  Google Scholar 

  47. Sharma B, Srivastava HK, Gayatri G, Sastry GN (2015) Energy decomposition analysis of cation–π, metal ion-lone pair, hydrogen bonded, charge-assisted hydrogen bonded, and π–π interactions. J Comput Chem 36:529–538

    Article  CAS  PubMed  Google Scholar 

  48. Kumar YB, Pandey A, Kumar N, Sastry GN (2023) Binding propensity and selectivity of cationic, anionic, and neutral guests with model hydrophobic hosts: a first principles study. J Comput Chem 44:432–441

    Article  CAS  PubMed  Google Scholar 

  49. Umadevi D, Sastry GN (2011) Molecular and ionic interaction with graphene nanoflakes: a computational investigation of CO2, H2O, Li, Mg, Li+, and Mg2+ interaction with polycyclic aromatic hydrocarbons. J Phys Chem C 115:9656–9667

    Article  CAS  Google Scholar 

  50. Koyanagi GK, Bohme DK, Kretzschmar I, Schröder D, Schwarz H (2001) Gas-phase chemistry of bare V+ cation with oxygen and water at room temperature: formation and hydration of vanadium oxide cations. J Phys Chem A 105:4259–4271

    Article  CAS  Google Scholar 

  51. Mavros MG, Tsuchimochi T, Kowalczyk T, McIsaac A, Wang LP, Voorhis TV (2014) What can density functional theory tell us about artificial catalytic water splitting? Inorg Chem 53:6386–6397

    Article  CAS  PubMed  Google Scholar 

  52. Tilson JL, Harrison JF (1991) Electronic and geometric structures of various products of the scandium++ water reaction. J Phys Chem 95:5097–5103

    Article  CAS  Google Scholar 

  53. Tee SY, Win KY, Teo WS, Koh LD, Liu S, Teng CP, Han MY (2017) Recent progress in energy driven water splitting. Adv Sci 4:1600337

    Article  Google Scholar 

  54. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  55. Blum O, Stöckigt D, Schröder D, Schwarz H (1992) O–H bond activation in the gas phase: the reactions of water and methanol with [FeCH3]+. Angew Chem Int Ed 31:603–604

    Article  Google Scholar 

  56. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  57. Simoes JAM, Beauchamp JL (1990) Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis. Chem Rev 90:629–688

    Article  CAS  Google Scholar 

  58. Moore CE (1959) Atomic energy levels; National Bureau of Standards: Washington, DC, 1952. Natl Bur Stand Circ 2:467

    Google Scholar 

  59. Kang H, Beauchamp JL (1986) Gas-phase studies of alkane oxidation by transition-metal oxides. Selective oxidation by CrO+. J Am Chem Soc 108:7502–7509

    Article  CAS  PubMed  Google Scholar 

  60. Fiedler A, Schroeder D, Shaik S, Schwarz H (1994) Electronic structures and gas-phase reactivities of cationic late-transition-metal oxides. J Am Chem Soc 116:10734–10741

    Article  CAS  Google Scholar 

  61. Chase MW, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syvened AN (1985) JANAF thermochemical tables. J Phys Chem Ref Data 14(Suppl 1)

  62. Gurvich LV, Veits IV, Alcock CB (1989) Thermodynamics properties of individual substances, vol 1, 4th edn. Hemisphere, New York

    Google Scholar 

  63. Armentrout PB (1989) Home gas phase inorganic chemistry chapter reactions of atomic metal ions with H2, CH4, and C2H6: electronic requirements for H-H, C–H, and C–C bond activation. In: Russell DH (ed) Gas phase inorganic chemistry. Plenum Press, New York

    Google Scholar 

  64. Armentrout PB, Kickel BL (1996) Gas-phase thermochemistry of transition metal ligand systems: reassessment of values and periodic trends.". In: Freiser BS (ed) Organometallic ion chemistry. Springer, Dordrecht

    Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc., Wallingford CT

  66. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  67. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  68. Shaik S, Chen H, Janardanan D (2011) Exchange-enhanced reactivity in bond activation by metal-oxo enzymes and synthetic reagents. Nat Chem 3:19–27

    Article  CAS  PubMed  Google Scholar 

  69. Bally T, Sastry GN (1997) Incorrect dissociation behavior of radical ions in density functional calculations. J Phys Chem A 101:7923–7925

    Article  CAS  Google Scholar 

  70. Xu X, Zhang W, Tang M, Truhlar DG (2015) Do practical standard coupled cluster calculations agree better than Kohn–Sham calculations with currently available functionals when compared to the best available experimental data for dissociation energies of bonds to 3d transition metals? J Chem Theory Comput 11:2036–2052

    Article  CAS  PubMed  Google Scholar 

  71. Irigoras A, Ugalde JM, Lopez X, Sarasola C (1996) On the dissociation energy of Ti(OH2)+. An MCSCF, CCSD(T), and DFT study. Can J Chem 74:1824–1829

    Article  CAS  Google Scholar 

  72. Martin ML (1996) Ab initio total atomization energies of small molecules-towards the basis set limit. Chem Phys Lett 259:669–678

    Article  CAS  Google Scholar 

  73. Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) A spin correction procedure for unrestricted Hartree–Fock and Møller–Plesset wavefunctions for singlet diradicals and polyradicals. Chem Phys Lett 149:537–542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DST is thanked for the J. C. Bose National Fellowship by GNS. For the INSPIRE fellowship, YBK thanks DST, and for the institutional fellowship, NK thanks CSIR-NEIST. We are also grateful to DBT to provide funding in the form of the Centre of Excellence for ACDSD.

Author information

Authors and Affiliations

Authors

Contributions

GNS has conceived the idea and guided the study. YBK and NK performed the calculations. YBK, and NK performed the data analysis and made the tables and figures for the manuscript and provided the draft of the manuscript. The final draft was read and finalized by all authors.

Corresponding author

Correspondence to G. Narahari Sastry.

Ethics declarations

Conflict of interest

The authors claim to have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1623 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargav Kumar, Y., Kumar, N. & Narahari Sastry, G. First-principles calculations on the micro-solvation of 3d-transition metal ions: solvation versus splitting water. Theor Chem Acc 142, 35 (2023). https://doi.org/10.1007/s00214-023-02974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02974-1

Keywords

Navigation