Skip to main content
Log in

W2SDD theory for computational thermochemistry: study of the addition of hydrogen halide to propene

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The Weizmann-n theories are characterized by a rigorous and well-defined series of ab initio calculations avoiding any empirical correction. W1 and W2 are two compound methods that aim for high accuracy by combining the results of several calculations. To expand W2 applicability to large molecules, an effective core potential, including relativistic effects, was included in its computational procedure, referred to as W2SDD. The cost-effective (accuracy/computational cost) W2SDD approach has a good performance in predicting both proton affinity and enthalpy of formation for a selected group of molecules containing halide atoms. The values obtained by W2SDD are very close to the original W2 theory. The W2SDD approach has also been applied to the mechanism for the hydrohalogenation of propene, and only one transition state for the reaction mechanism in cyclohexane medium has been found. In addition, the TD-DFT electronic circular dichroism spectrum of 2-chlorobutane shows a signal inversion for the gas-phase versus in cyclohexane solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cioslowski J (2001) Quantum-mechanical prediction of thermochemical data. Kluwer, Dordrecht

    Google Scholar 

  2. Wang Q, Mannan MS (2010) J Chem Eng Data 55:5128–5132

    Article  CAS  Google Scholar 

  3. Zhang J, Valeev EF (2012) J Chem Theory Comput 8:3175–3186

    Article  CAS  PubMed  Google Scholar 

  4. Gong C-M, Ning H-B, Li Z-R, Li X-Y (2014) Theor Chem Acc 134:1599–1613

    Article  CAS  Google Scholar 

  5. Guan Y, Liu R, Lou J, Ma H, Song J (2019) Theor Chem Acc 138:114–130

    Article  CAS  Google Scholar 

  6. Freitas VLS, Gomes JRB, da Silva MDMCR (2014) J Chem Eng Data 59:312–322

    Article  CAS  Google Scholar 

  7. Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO (2015) Phys Chem Chem Phys 17:6174–6191

    Article  CAS  PubMed  Google Scholar 

  8. Nirwan A, Ghule VD (2018) Theor Chem Acc 137:115–124

    Article  CAS  Google Scholar 

  9. Karton A, Yu L-J, Kesharwani MK, Martin JML (2014) Theor Chem Acc 133:1483–1498

    Article  CAS  Google Scholar 

  10. Chan B, Bene JED, Radom L (2012) Theor Chem Acc 131:1088–1096

    Article  CAS  Google Scholar 

  11. Carmona DJ, Contreras DR, Douglas-Gallardo OA, Vogt-Geisse S, Jaque P, Vohringer-Martinez E (2018) Theor Chem Acc 137:126–137

    Article  CAS  Google Scholar 

  12. Morgon NH (1998) J Phys Chem A 102:2050–2054

    Article  CAS  Google Scholar 

  13. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622–5629

    Article  CAS  Google Scholar 

  14. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  15. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  16. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108–084120

    Article  PubMed  CAS  Google Scholar 

  17. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  18. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  19. Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598–2619

    Article  CAS  Google Scholar 

  20. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856

    Article  CAS  Google Scholar 

  21. Boese AD, Oren M, Atasoylu O, Martin JML, Kllay M, Gauss J (2004) J Chem Phys 120:4129–4141

    Article  CAS  PubMed  Google Scholar 

  22. Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108–144125

    Article  PubMed  CAS  Google Scholar 

  23. Pereira DH, Ducati LC, Rittner R, Custodio R (2014) J Mol Model 20:2199–2205

    Article  PubMed  CAS  Google Scholar 

  24. Rocha CMR, Pereira DH, Morgon NH, Custodio R (2013) J Chem Phys 139:184108–184120

    Article  PubMed  CAS  Google Scholar 

  25. Heerdt G, Pereira DH, Custodio R, Morgon NH (2015) Comput Theor Chem 1067:84–92

    Article  CAS  Google Scholar 

  26. de Souza Silva C, Pereira DH, Custodio R (2016) J Chem Phys 144:204118–204127

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 16 (Revision A.03)

  28. Martin JML, Sundermann A (2001) J Chem Phys 114:3408–3420

    Article  CAS  Google Scholar 

  29. Custodio R, Giordan M, Morgon NH, Goddard JD (1992) Int J Q Chem 42:411–423

    Article  CAS  Google Scholar 

  30. Custodio R, Goddard JD, Giordan M, Morgon NH (1992) Can J Chem 70:580–588

    Article  CAS  Google Scholar 

  31. Mohallem JR, Trsic M (1987) J Chem Phys 86:5043–5044

    Article  CAS  Google Scholar 

  32. Bergner A, Dolg M, Küchle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  33. Wood GPF, Radom L, Petersson GA, Barnes EC, Frisch MJ, Montgomery JA (2006) J Chem Phys 125:094106–094123

    Article  PubMed  CAS  Google Scholar 

  34. Nelder JA, Mead R (1965) Comput J 7:308–313

    Article  Google Scholar 

  35. Jones G (1961) J Chem Educ 38:297–301

    Article  CAS  Google Scholar 

  36. Kerber RC (2002) Found Chem 4:61–72

    Article  CAS  Google Scholar 

  37. Sousa I, Heerdt G, Ximenes V, de Souza A, Morgon N (2020) J Braz Chem Soc 31:613–618

    CAS  Google Scholar 

  38. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Linstrom P (1997) NIST Chemistry WebBook, NIST Standard Reference Database 69

  41. Franck EU, Cox JD, Wagman DD, Medvedev VA (1990) CODATA-key values for thermodynamics, IES on thermodynamic properties. Hemisphere Publishing Corporation, New York. http://www.codata.org/codata/databases/key1.html/

  42. Jorge FE, Neto AC, Camiletti GG, Machado SF (2009) J Chem Phys 130:064108–064115

    Article  CAS  PubMed  Google Scholar 

  43. Rusic B, Mayhew CA, Berkowitz J (1988) J Chem Phys 88:5580–5593

    Article  Google Scholar 

  44. Storms E, Mueller B (1977) J Chem Phys 81:318–324

    Article  CAS  Google Scholar 

  45. Firme CL (2019) J Mol Model 25:128–141

    Article  PubMed  CAS  Google Scholar 

  46. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  47. Rappé AK, Casewit CJ, Colwell K, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of the State of São Paulo (FAPESP, Grants: 2013/08293-7 and 2019/12294-5) and the National Council for Scientific and Technological Development (CNPq, grant 303581/2018-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson H. Morgon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porto, C.M., Santana, L.C. & Morgon, N.H. W2SDD theory for computational thermochemistry: study of the addition of hydrogen halide to propene. Theor Chem Acc 139, 121 (2020). https://doi.org/10.1007/s00214-020-02630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02630-y

Keywords

Navigation