Skip to main content
Log in

A study of the rotational barriers for some organic compounds using the G3 and G3CEP theories

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The G3, G3CEP, MP4, MP4CEP, QCISD(T), and QCISD(T)CEP methods were applied to study 43 internal rotational barriers of different molecules. The calculated G3 and G3CEP barriers were accurate with respect to those obtained experimentally, typically showing deviations of <0.50 kcal mol−1. The results for the MP4CEP, MP4, QCISD(T), and QCISD(T)CEP calculations were less accurate, and larger deviations of approximately ±1 kcal mol−1 were observed. The accuracy of G3CEP was comparable to that of G3, but a reduction in CPU time of between 5 and 35 % was observed when the dependence of the pseudopotentials on the size of the molecule and atom type was taken into account. The behaviors of the energy components show that these corrections depend on the molecular environment and whether the calculations are performed with all electrons or pseudopotentials. Usually, the predominance of a specific effect follows a distinct pattern when the G3 and G3CEP results are compared. For the G3 calculations, the most important component of the corrected MP4/6-31G(d) rotational energy is ΔE 2df,p. Among the 43 molecules, 29 were dependent on polarization effects, ΔE 2df,p; 19 were dependent on diffuse functions, ΔE +; and 13 depended on the effects of more elaborate basis functions (ΔE G3large). Similar behavior was observed for the G3CEP calculations: polarization effects were more important for 25 molecules, followed closely by the effect of diffuse functions for 23 molecules, and finally the effect of large basis sets (19 molecules). ΔE QCI correction seldom resulted in significant effects on the G3 and G3CEP calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3a–f
Fig. 4a–f

Similar content being viewed by others

References

  1. Dale J (1978) Stereochemistry and conformational analysis. Verlag Chemie, Deerfield

  2. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

  3. Veillard A (1974) In: Orville-Thomas WJ (ed) Internal rotation in molecules. Wiley, London, p 385

  4. Ducati LC, Custodio R, Rittner R (2010) Int J Quantum Chem 110:2006–2014

    CAS  Google Scholar 

  5. Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Phys Chem Chem Phys 15:1358–1363

    Article  CAS  Google Scholar 

  6. Cormanich RA, Ducati LC, Rittner R (2011) Chem Phys 387:85–91

    Article  CAS  Google Scholar 

  7. Peterson KA, Feller D, Dixon DA (2012) Theor Chem Acc 131:1079–1099

    Article  CAS  Google Scholar 

  8. Feller D, Peterson KA, Dixon DA (2012) Mol Phys 110:2381–2399

    Article  CAS  Google Scholar 

  9. Dixon DA, Feller D, Peterson KA (2012) Annu Rev Comput Chem 8:1–28

    CAS  Google Scholar 

  10. Pople JA, Head-Gordon M, Fox DJ et al (1989) J Chem Phys 90:5622–5629

    Article  CAS  Google Scholar 

  11. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  12. Curtiss LA, Raghavachari K, Redfern PC et al (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  13. Curtiss LA, Redfern PC, Raghavachari K et al (1999) J Chem Phys 110:4703–4709

    Article  CAS  Google Scholar 

  14. Curtiss LA, Redfern PC, Rassolov V et al (2001) J Chem Phys 114:9287–9295

    Article  CAS  Google Scholar 

  15. Curtiss LA, Redfern PC, Raghavachari K (2005) J Chem Phys 123:124107–124119

    Article  CAS  Google Scholar 

  16. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108–084120

    Article  CAS  Google Scholar 

  17. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105–124113

    Article  CAS  Google Scholar 

  18. Mayhall NJ, Raghavachari K, Redfern PC et al (2008) J Chem Phys 128:144122–144131

    Article  CAS  Google Scholar 

  19. Mayhall NJ, Raghavachari K, Redfern PC, Curtiss LA (2009) J Phys Chem A 113:5170–5175

    Article  CAS  Google Scholar 

  20. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  21. Petersson KA, Woon DE, Dunning TH (1994) J Chem Phys 100:7410–7415

    Article  Google Scholar 

  22. Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598–2619

    Article  CAS  Google Scholar 

  23. Montgomery JA, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900–5909

    Article  CAS  Google Scholar 

  24. Petersson GA, Bennett A, Tensfeldt TG et al (1988) J Chem Phys 89:2193–2218

    Article  CAS  Google Scholar 

  25. Petersson GA, Tensfeldt TG, Montgomery JA (1991) J Chem Phys 94:6091–6101

    Article  CAS  Google Scholar 

  26. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856

    Article  CAS  Google Scholar 

  27. Boese AD, Oren M, Atasoylu O et al (2004) J Chem Phys 120:4129–4141

    Article  CAS  Google Scholar 

  28. Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108–144125

    Article  CAS  Google Scholar 

  29. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026–6033

    Article  Google Scholar 

  30. Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555–5565

    Article  CAS  Google Scholar 

  31. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  32. Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) J Chem Phys 135:034106–034120

    Article  CAS  Google Scholar 

  33. Murcko MA, Castejon H, Wiberg KB (1996) J Phys Chem 100:16162–16168

    Article  CAS  Google Scholar 

  34. Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) J Chem Phys 135:219901–219901

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09. Gaussian, Inc., Wallingford

  36. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. Wiley-Interscience, New York

    Google Scholar 

  37. Clark T, Von Rague Schleyer P (1981) J Comput Chem 2:20–29

    Article  CAS  Google Scholar 

  38. Ducati LC, Freitas MP, Tormena CF, Rittner R (2008) J Mol Struct THEOCHEM 851:147–157

    Article  CAS  Google Scholar 

  39. Burcl R (2011) J Phys Chem A 115:3605–3606

    Article  CAS  Google Scholar 

  40. Speakman LD, Papas BN, Woodcock HL, Schaefer HF (2004) J Chem Phys 120:4247–4250

    Article  CAS  Google Scholar 

  41. Meier RJ (2011) J Phys Chem A 115:3604–3604

    Article  CAS  Google Scholar 

  42. Scroggin DG (1974) J Chem Phys 60:1376–1385

    Article  CAS  Google Scholar 

  43. Christensen DH (1970) J Chem Phys 53:3912–3922

    Article  CAS  Google Scholar 

  44. Sunners B, Piette LH, Schneider WG (1960) Can J Chem 38:681–688

    Article  CAS  Google Scholar 

  45. Kamei H (1968) Bull Chem Soc Jpn 41:2269–2273

    Article  CAS  Google Scholar 

  46. Pedersoli S, Tormena CF, Rittner R (2008) J Mol Struct 875:235–243

    Article  CAS  Google Scholar 

  47. Martins CR, Rittner R, Tormena CF (2005) J Mol Struct THEOCHEM 728:79–84

    Article  CAS  Google Scholar 

  48. Jones LH (1972) J Chem Phys 57:1012–1013

    Article  CAS  Google Scholar 

  49. Danielson DD, Patton JV, Hedberg K (1977) J Am Chem Soc 99:6484–6487

    Article  CAS  Google Scholar 

  50. Venkateswarlu P, Gordy W (1955) J Chem Phys 23:1200–1202

    Article  CAS  Google Scholar 

  51. Herbst E, Messer JK, De Lucia FC, Helminger P (1984) J Mol Spectrosc 108:42–57

    Article  CAS  Google Scholar 

  52. Kakar RK, Quade CR (1980) J Chem Phys 72:4300–4307

    Article  CAS  Google Scholar 

  53. Kondo S, Hirota E (1970) J Mol Spectrosc 34:97–107

    Article  CAS  Google Scholar 

  54. Larsen NW (1986) J Mol Struct 144:83–99

    Article  CAS  Google Scholar 

  55. Pierce L, Hayashi M (1961) J Chem Phys 35:479–485

    Article  CAS  Google Scholar 

  56. Durig JR, Tang Q, Phan HV (1993) J Raman Spectrosc 24:851–865

    Article  CAS  Google Scholar 

  57. Butz KW, Krajnovich DJ, Parmenter CS (1990) J Chem Phys 93:1557–1567

    Article  CAS  Google Scholar 

  58. Allen LC (1968) Chem Phys Lett 2:597–601

    Article  CAS  Google Scholar 

  59. Randell J, Hardy JA, Cox AP (1988) J Chem Soc Faraday Trans 2(84):1199–1212

    Google Scholar 

  60. Kakar RK, Rinehart EA, Quade CR, Kojima T (1970) J Chem Phys 52:3803–3813

    Article  CAS  Google Scholar 

  61. Herzberg G (1967) Electronic spectra and electronic structure of polyatomic molecules. D. Van Nostrand, New York

    Google Scholar 

  62. Kraitchman J, Dailey BP (1955) J Chem Phys 23:184–190

    Article  CAS  Google Scholar 

  63. Fliege E, Dreizler H, Demaison J et al (1983) J Chem Phys 78:3541–3545

    Article  CAS  Google Scholar 

  64. Villamanan RM, Chen WD, Wlodarczak G et al (1995) J Mol Spectrosc 171:223–247

    Article  CAS  Google Scholar 

  65. Meerts WL, Ozier I (1991) Chem Phys 152:241–259

    Article  CAS  Google Scholar 

  66. Mann DE, Plyler EK (1953) J Chem Phys 21:1116–1117

    Article  CAS  Google Scholar 

  67. Stahl W, Dreizler H, Hayashi M (1983) Z Naturforsch A 38:1010–1014

    Google Scholar 

  68. Margulès L, Carvajal M, Demaison J (2008) J Mol Spectrosc 247:160–166

    Article  CAS  Google Scholar 

  69. Mizushima S, Shimanouchi T, Harada I et al (1975) Can J Phys 53:2085–2094

    Article  CAS  Google Scholar 

  70. Frankiss SG, Harrison DJ (1975) Spectrochim Acta Pt A 31:29–39

    Google Scholar 

  71. Ilyushin VV, Alekseev EA, Dyubko SF et al (2001) J Mol Spectrosc 205:286–303

    Article  CAS  Google Scholar 

  72. Kollman PA, Allen LC (1970) Chem Phys Lett 5:75–76

    Article  CAS  Google Scholar 

  73. Absar I, van Wazer JR (1971) Chem Commun 611–612

  74. Nascimento J, Pelegrini M, Ferrão LFA et al (2011) J Braz Chem Soc 22:968–975

    Article  CAS  Google Scholar 

  75. Allen LC, Scarzafava E (1971) J Am Chem Soc 93:311–314

    Article  CAS  Google Scholar 

  76. Bak B (1966) J Chem Phys 45:883–887

    Article  CAS  Google Scholar 

  77. Swalen JD, Herschbach DR (1957) J Chem Phys 27:100–108

    Article  CAS  Google Scholar 

  78. Herrebout WA, van der Veken BJ, Wang A, Durig JR (1995) J Phys Chem 99:578–585

    Article  CAS  Google Scholar 

  79. Guirgis GA, Durig JR, Bell S (1989) J Mol Struct 196:101–111

    Article  CAS  Google Scholar 

  80. Durig JR, Costner TG, Wang A et al (1993) J Mol Struct 300:257–279

    Article  CAS  Google Scholar 

  81. Caminati W, Vogelsanger B, Bauder A (1988) J Mol Spectrosc 128:384–398

    Article  CAS  Google Scholar 

  82. Tsuboi M, Overend J (1974) J Mol Spectrosc 52:256–268

    Article  CAS  Google Scholar 

  83. Hunt RH, Leacock RA, Peters CW, Hecht KT (1965) J Chem Phys 42:1931–1946

    Article  CAS  Google Scholar 

  84. Behrend J, Mittler P, Winnewisser G, Yamada KMT (1991) J Mol Spectrosc 150:99–119

    Article  CAS  Google Scholar 

  85. Herbst E, Winnewisser G (1989) Chem Phys Lett 155:572–575

    Article  CAS  Google Scholar 

  86. Odom JD, Wurrey CJ, Carreira LA, Durig JR (1975) Inorg Chem 14:2849–2853

    Article  CAS  Google Scholar 

  87. Hirao H (2008) Chem Phys 344:213–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Center for Computational Engineering and Sciences: grant 2013/08293-7), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and FAEPEX-UNICAMP (Fundo de Apoio ao Ensino, à Pesquisa e à Extensão da UNICAMP). The National Center of High Performance Computing in São Paulo (CENAPAD—SP) is acknowledged for making their computational facilities available to us. We also would like to thank Dr. Telma Rie Doi Ducati for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Custodio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Figures S1–S23, depicting the experimental and theoretical barriers and respective energy components for the G3 and G3CEP calculations (Supplementary Information 1) (DOC 5854 kb)

ESM 2

Cartesian coordinates (in Å) of the optimized geometries calculated at the MP2(full)/6-31G(d) level of theory with specific dihedral bond angles for all molecules are provided (Supplementary Information 2) (DOC 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, D.H., Ducati, L.C., Rittner, R. et al. A study of the rotational barriers for some organic compounds using the G3 and G3CEP theories. J Mol Model 20, 2199 (2014). https://doi.org/10.1007/s00894-014-2199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2199-3

Keywords

Navigation