Skip to main content
Log in

Proton-bound homodimers involving second-row atoms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

High-level ab initio quantum chemical calculations (G4(MP2)//MP2/6-311+G(2df,p)) have been used to examine homodimers of second-row bases, and to compare the results with those obtained previously for the first-row analogs. The relationship between the binding energies of the dimers and the proton affinities (PAs) of the bases follows the same pattern as that for the first-row systems, with the binding energies initially increasing with increasing proton affinity but subsequently decreasing. This may be attributed to the opposing effects of increased PA on the hydrogen-bond donor and hydrogen-bond acceptor. The binding energies are generally smaller for the second-row dimers than for the corresponding first-row dimers. There is an increased tendency for asymmetrical hydrogen bonds in homodimers of the second-row compared with first-row dimers. This may be attributed to the lower electronegativities of second-row atoms relative to their first-row counterparts, and to the longer internuclear separation between the hydrogen-bonded second-row atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Scheiner S (ed) (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  3. Scheiner S (1997) Molecular interactions: from van der Waals to strongly bound complexes. John Wiley and Sons, Chichester

    Google Scholar 

  4. Grabowski SJ (ed) (2006) Hydrogen bonding—new insights. Springer, Dordrecht

    Google Scholar 

  5. Buckingham AD, Del Bene JE, McDowell SAC (2008) Chem Phys Lett 463:1–10

    Article  CAS  Google Scholar 

  6. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, Oxford

    Google Scholar 

  7. Zeegers-Huyskens T (1988) J Mol Struct 177:125–141

    Article  Google Scholar 

  8. Gilli G, Gilli P (2000) J Mol Struct 552:1–15

    Article  CAS  Google Scholar 

  9. Humbel S, Hoffmann N, Cote I, Bouquant J (2000) Chem Eur J 6:1592–1600

    Article  CAS  Google Scholar 

  10. Humbel S (2002) J Phys Chem A 106:5517–5520

    Article  CAS  Google Scholar 

  11. Bian L (2003) J Phys Chem A 107:11517–11524

    Article  CAS  Google Scholar 

  12. Mautner M (2005) Chem Rev 105:213–284

    Article  Google Scholar 

  13. Del Bene JE, Elguero J, Alkorta I (2007) J Phys Chem A 111:3416–3422

    Article  CAS  Google Scholar 

  14. Hibbert F, Emsley J (1990) Adv Phys Org Chem 26:255–379

    Article  CAS  Google Scholar 

  15. Schiøtt B, Iversen BB, Madsen GKH, Bruice TC (1998) Proc Natl Acad Sci USA 95:12799–12802

    Article  Google Scholar 

  16. Overgaard J, Schiøtt B, Larsen FK, Schultz AJ, John C, MacDonald JC, Iversen BB (1999) Angew Chem Int Ed 38:1239–1242

    Article  CAS  Google Scholar 

  17. Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) J Am Chem Soc 122:10405–10417

    Article  CAS  Google Scholar 

  18. Pauling LC (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  19. Desiraju G, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  20. Marechal Y (2007) The hydrogen bond and the water molecule: the physics and chemistry of water, aqueous and biomedia. Elsevier, Amsterdam

    Google Scholar 

  21. Chan B, Del Bene JE, Radom L (2007) J Am Chem Soc 129:12197–12199

    Article  CAS  Google Scholar 

  22. Chan B, Del Bene JE, Radom L (2009) Mol Phys 107:1095–1105

    Article  CAS  Google Scholar 

  23. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  24. Jensen F (2006) Introduction to computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E01. Gaussian, Inc., Wallingford CT

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A02. Gaussian, Inc., Wallingford CT

  27. Swart M, Rösler E, Bickelhaupt FM (2006) J Comput Chem 27:1486–1493

    Article  CAS  Google Scholar 

  28. Schwerdtfeger P (2010) The CTCP table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements. Massey University, Auckland. URL: http://ctcp.massey.ac.nz/dipole-polarizabilities

  29. Chan B, Del Bene JE, Elguero J, Radom L (2005) J Phys Chem A 109:5509–5517

    Article  CAS  Google Scholar 

  30. Alkorta I, Elguero J, Del Bene JE (2007) J Phys Chem A 111:9924–9930

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the award of an Australian Professorial Fellowship and funding from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (to L.R.), and generous allocations of computer time from the National Computational Infrastructure (NCI) National Facility and Intersect Australia Ltd, and from the Ohio Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bun Chan, Janet E. Del Bene or Leo Radom.

Additional information

Dedicated to Professor Eluvathingal Jemmis and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, B., Del Bene, J.E. & Radom, L. Proton-bound homodimers involving second-row atoms. Theor Chem Acc 131, 1088 (2012). https://doi.org/10.1007/s00214-012-1088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1088-z

Keywords

Navigation