Skip to main content
Log in

Exploring the limits of recent exchange–correlation functionals in modeling lithium/benzene interaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The interaction of the lithium alkaline metal, with the benzene molecule, is herein investigated in the framework of density functional theory (DFT) method. Performances of a large set of exchange–correlation functionals in reproducing some physical properties are benchmarked using as reference the CCSD(T) method at the complete basis set limit (CCSD(T)/CBS). Both the cationic and neutral lithium–benzene systems (LiBz+ and LiBz) are considered as well as the sandwich compound (BzLiBz+). Among all the functionals, ωB97X emerges as the best approach for modeling all the three systems analyzed, while large deviations are observed for several functionals in the case of the problematic neutral Li–benzene system. Particular attention was devoted to the discussion of the results obtained with methods containing empirical dispersion corrections. More broadly, our results underline the difficulties and the limits of current DFT approaches in the description of the interaction of Li with aromatic molecules, which is relevant in several applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Fal VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  3. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  4. Neto AHC, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  Google Scholar 

  5. Rao C, Sood A, Subrahmanyam K, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chemie Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  6. Ricca C, Labat F, Russo N et al (2014) Oxidation of ethylbenzene to acetophenone with N-doped graphene: insight from theory. J Phys Chem C 118:12275–12284

    Article  CAS  Google Scholar 

  7. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. Acs Catal 2:781–794

    Article  CAS  Google Scholar 

  8. Giovannetti G, Khomyakov PA, Brocks G et al (2008) Doping graphene with metal contacts. Phys Rev Lett 101:26803

    Article  CAS  Google Scholar 

  9. Uchoa B, Lin C-Y, Neto AHC (2008) Tailoring graphene with metals on top. Phys Rev B 77:35420

    Article  Google Scholar 

  10. Bonaccorso F, Balis N, Stylianakis MM et al (2015) Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv Funct Mater 25:3870–3880. doi:10.1002/adfm.201501052

    Article  CAS  Google Scholar 

  11. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  12. Yoo E, Kim J, Hosono E et al (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  13. Deng W-Q, Xu X, Goddard WA (2004) New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. Phys Rev Lett 92:166103

    Article  Google Scholar 

  14. Denis PA (2011) Chemical reactivity of lithium doped monolayer and bilayer graphene. J Phys Chem C 115:13392–13398

    Article  CAS  Google Scholar 

  15. Subrahmanyam KS, Kumar P, Maitra U et al (2011) Chemical storage of hydrogen in few-layer graphene. Proc Natl Acad Sci 108:2674–2677

    Article  CAS  Google Scholar 

  16. Ishikawa S, Madjarova G, Yamabe T (2001) First-principles study of the lithium interaction with polycyclic aromatic hydrocarbons. J Phys Chem B 105:11986–11993

    Article  CAS  Google Scholar 

  17. Vollmer JM, Kandalam AK, Curtiss LA (2002) Lithium–benzene sandwich compounds: a quantum chemical study. J Phys Chem A 106:9533–9537

    Article  CAS  Google Scholar 

  18. Umadevi D, Sastry GN (2011) Molecular and ionic interaction with graphene nanoflakes: a computational investigation of CO2, H2O, Li, Mg, Li+, and Mg2+ interaction with polycyclic aromatic hydrocarbons. J Phys Chem C 115:9656–9667. doi:10.1021/jp201578p

    Article  CAS  Google Scholar 

  19. Podeszwa R (2010) Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. J Chem Phys 132:044704–044708. doi:10.1063/1.3300064

    Article  Google Scholar 

  20. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  21. Ruiz E, Salahub DR, Vela A (1995) Defining the domain of density functionals: charge-transfer complexes. J Am Chem Soc 117:1141–1142

    Article  CAS  Google Scholar 

  22. Ruiz E, Salahub DR, Vela A (1996) Charge-transfer complexes: stringent tests for widely used density functionals. J Phys Chem 100:12265–12276

    Article  CAS  Google Scholar 

  23. Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126:154109

    Article  Google Scholar 

  24. Zhang Y, Yang W (1998) A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons. J Chem Phys 109:2604–2608

    Article  CAS  Google Scholar 

  25. Dreizler RM, da Providencia J (2013) Density functional methods in physics. Springer Science & Business Media, Berlin

    Google Scholar 

  26. Dinadayalane TC, Hassan A, Leszczynski J (2012) A theoretical study of cation–π interactions: Li+, Na+, K+, Be2+, Mg2+ and Ca2+ complexation with mono-and bicyclic ring-fused benzene derivatives. Theor Chem Acc 131:1–11

    Article  CAS  Google Scholar 

  27. Mishra PC, Yadav A (2012) Enhanced electron density edge effect in polycyclic aromatic hydrocarbons as finite size models of graphene and graphene nanoribbons. Natl Acad Sci Lett 35:53–59

    Article  CAS  Google Scholar 

  28. Peles-Lemli B, Kánnár D, Nie JC et al (2013) Some unexpected behavior of the adsorption of alkali metal ions onto the graphene surface under the effect of external electric field. J Phys Chem C 117:21509–21515

    Article  CAS  Google Scholar 

  29. Wireduaah S, Parker TM, Lewis M (2013) Effects of the aromatic substitution pattern in cation–π sandwich complexes. J Phys Chem A 117:2598–2604

    Article  CAS  Google Scholar 

  30. Zhu ZH, Lu GQ (2004) Comparative study of Li, Na, and K adsorptions on graphite by using ab initio method. Langmuir 20:10751–10755

    Article  CAS  Google Scholar 

  31. Baker TA, Head-Gordon M (2010) Modeling the charge transfer between alkali metals and polycyclic aromatic hydrocarbons using electronic structure methods. J Phys Chem A 114:10326–10333

    Article  CAS  Google Scholar 

  32. Quiñonero D, Garau C, Frontera A et al (2005) Structure and binding energy of anion–π and cation–π complexes: a comparison of MP2, RI-MP2, DFT, and DF-DFT methods. J Phys Chem A 109:4632–4637

    Article  Google Scholar 

  33. Frontera A, Quiñonero D, Costa A et al (2007) MP2 study of cooperative effects between cation–π, anion–π and π–π interactions. New J Chem 31:556–560

    Article  CAS  Google Scholar 

  34. Ferre-Vilaplana A (2008) Storage of hydrogen adsorbed on alkali metal doped single-layer all-carbon materials. J Phys Chem C 112:3998–4004

    Article  CAS  Google Scholar 

  35. Martinez JI, Cabria I, López MJ, Alonso JA (2008) Adsorption of lithium on finite graphitic clusters. J Phys Chem C 113:939–941

    Article  Google Scholar 

  36. Valencia F, Romero AH, Ancilotto F, Silvestrelli PL (2006) Lithium adsorption on graphite from density functional theory calculations. J Phys Chem B 110:14832–14841

    Article  CAS  Google Scholar 

  37. Khantha M, Cordero NA, Molina LM et al (2004) Interaction of lithium with graphene: an ab initio study. Phys Rev B 70:125422

    Article  Google Scholar 

  38. Cabria I, López MJ, Alonso JA (2005) Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J Chem Phys 123:204721

    Article  CAS  Google Scholar 

  39. Panigrahi S, Sastry GN (2014) Reducing polyaromatic hydrocarbons: the capability and capacity of lithium. RSC Adv 4:14557–14563. doi:10.1039/C3RA47326K

    Article  CAS  Google Scholar 

  40. Rezác J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7:2427–2438

    Article  Google Scholar 

  41. Perdew JP, Ruzsinszky A, Constantin LA et al (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theory Comput 5:902–908. doi:10.1021/ct800531s

    Article  CAS  Google Scholar 

  42. Lao KU, Schäffer R, Jansen G, Herbert JM (2015) Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory. J Chem Theory Comput 11:2473–2486. doi:10.1021/ct5010593

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT

  44. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  45. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  46. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  47. Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos Trans R Soc Lond A Math Phys Eng Sci 372:20120476

    Article  Google Scholar 

  48. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  49. Barone V, Orlandini L, Adamo C (1994) Proton transfer in model hydrogen-bonded systems by a density functional approach. Chem Phys Lett 231:295–300

    Article  CAS  Google Scholar 

  50. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  51. Halkier A, Helgaker T, Jørgensen P et al (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286:243–252

    Article  CAS  Google Scholar 

  52. Mecozzi S, West AP, Dougherty DA (1996) Cation–π interactions in simple aromatics: electrostatics provide a predictive tool. J Am Chem Soc 118:2307–2308. doi:10.1021/ja9539608

    Article  CAS  Google Scholar 

  53. Frontera A, Quinonero D, Deya PM (2011) Cation–π and anion–π interactions. Wiley Interdiscip Rev Comput Mol Sci 1:440–459

    Article  CAS  Google Scholar 

  54. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324. doi:10.1021/cr9603744

    Article  CAS  Google Scholar 

  55. Archambault F, Chipot C, Soteras I et al (2009) Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions. J Chem Theory Comput 5:3022–3031. doi:10.1021/ct9004189

    Article  CAS  Google Scholar 

  56. Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794

    Article  CAS  Google Scholar 

  57. Chermette H, Ciofini I, Mariotti F, Daul C (2001) A posteriori corrections to systematic failures of standard density functionals: the dissociation of two-center three-electron systems. J Chem Phys 115:11068

    Article  CAS  Google Scholar 

  58. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:84106

    Article  Google Scholar 

  59. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  60. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  61. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  62. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  63. Goerigk L (2015) Treating London-dispersion effects with the latest Minnesota density functionals: problems and possible solutions. J Phys Chem Lett 6:3891–3896. doi:10.1021/acs.jpclett.5b01591

    Article  CAS  Google Scholar 

  64. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  65. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  66. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  67. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  68. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  69. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  70. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  71. Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys 99:607–615

    Article  CAS  Google Scholar 

  72. Xu X, Goddard WA (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci USA 101:2673–2677

    Article  CAS  Google Scholar 

  73. Wilson PJ, Bradley TJ, Tozer DJ (2001) Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. J Chem Phys 115:9233–9242

    Article  CAS  Google Scholar 

  74. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  75. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  76. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  77. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  78. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416

    Article  CAS  Google Scholar 

  79. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J Phys Chem A 110:5121–5129

    Article  CAS  Google Scholar 

  80. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130

    Article  CAS  Google Scholar 

  81. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  82. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109

    Article  Google Scholar 

  83. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  84. Schwabe T, Grimme S (2006) Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys 8:4398–4401

    Article  CAS  Google Scholar 

  85. Brémond E, Adamo C (2011) Seeking for parameter-free double-hybrid functionals: the PBE0-DH model. J Chem Phys 135:24106

    Article  Google Scholar 

  86. Toulouse J, Sharkas K, Brémond E, Adamo C (2011) Communication: rationale for a new class of double-hybrid approximations in density-functional theory. J Chem Phys 135:101102

    Article  Google Scholar 

  87. Brémond É, Sancho-García JC, Pérez-Jiménez ÁJ, Adamo C (2014) Communication: double-hybrid functionals from adiabatic-connection: the QIDH model. J Chem Phys 141:31101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marika Savarese or Carlo Adamo.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savarese, M., Brémond, É. & Adamo, C. Exploring the limits of recent exchange–correlation functionals in modeling lithium/benzene interaction. Theor Chem Acc 135, 99 (2016). https://doi.org/10.1007/s00214-016-1810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1810-3

Keywords

Navigation