Skip to main content
Log in

A theoretical study of cation--π interactions: Li+, Na+, K+, Be2+, Mg2+ and Ca2+ complexation with mono- and bicyclic ring-fused benzene derivatives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

DFT (B3LYP functional) and MP2 methods using 6-311+G(2d,2p) basis set have been employed to examine the effect of ring fusion to benzene on the cation--π interactions involving alkali metal ions (Li+, Na+, and K+) and alkaline earth metal ions (Be2+, Mg2+ and Ca2+). Our present study indicates that modification of benzene (π-electron source) by fusion of monocyclic or bicyclic (or mixture of these two kinds of rings) strengthens the binding affinity of both alkali and alkaline earth metal cations. The strength of interaction decreases in the following order: Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+ for any considered aromatic ligand. The interaction energies for the complexes formed by divalent cations are 4–6 times larger than those for the complexes involving monovalent cations. The structural changes in the ring wherein metal ion binds are examined. The distance between ring centroid and the metal ion is calculated for all of the complexes. Strained bicyclo[2.1.1]hexene ring fusion has substantially larger effect on the strength of cation--π interactions than the monocyclic ring fusion for all of the cations due to the π-electron localization at the central benzene ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frontera A, Quiñonero D, Deyà PM (2011) WIREs Comput Mol Sci 1:440

    Article  CAS  Google Scholar 

  2. Schneider HJ (2009) Angew Chem Int Ed 48:3924

    Article  CAS  Google Scholar 

  3. Reddy AS, Sastry GM, Sastry GN (2007) Prot Struct Funct Bioinf 67:1179

    Google Scholar 

  4. Mitchell JB, Nandi CL, McDonald IK, Thornton JM, Price SL (1994) J Mol Biol 239:315

    Article  CAS  Google Scholar 

  5. Stauffer DA, Karlin A (1994) Biochemistry 33:6840

    Article  CAS  Google Scholar 

  6. Wintjens R, Liévin J, Rooman M, Buisine E (2000) J Mol Biol 302:395

    Article  CAS  Google Scholar 

  7. Pletneva EV, Laederach AT, Fulton DB, Kostic NM (2001) J Am Chem Soc 123:6232

    Article  CAS  Google Scholar 

  8. Dougherty DA (2008) J Org Chem 73:3667

    Article  CAS  Google Scholar 

  9. Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA (1998) Proc Natl Acad Sci USA 95:12088

    Article  CAS  Google Scholar 

  10. Choi HS, Suh SB, Cho SJ, Kim KS (1998) Proc Natl Acad Sci USA 95:12094

    Article  CAS  Google Scholar 

  11. Kim D, Hu S, Tarakeshwar P, Kim KS, Lisy JM (2003) J Phys Chem A 107:1228

    Article  CAS  Google Scholar 

  12. Feller D, Dixon DA, Nicholas JB (2000) J Phys Chem A 104:11414

    Article  CAS  Google Scholar 

  13. Feller D (2000) Chem Phys Lett 322:543

    Article  CAS  Google Scholar 

  14. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893

    Article  CAS  Google Scholar 

  15. Tsuzuki S, Uchimaru T, Mikami M (2003) J Phys Chem A 107:10414

    Article  CAS  Google Scholar 

  16. Dinadayalane TC, Hassan A, Leszczynski J (2010) J Mol Struct 976:320

    Article  CAS  Google Scholar 

  17. Dinadayalane TC, Afanasiev D, Leszczynski J (2008) J Phys Chem A 112:7916

    Article  CAS  Google Scholar 

  18. Hassan A, Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 443:205

    Article  CAS  Google Scholar 

  19. Dinadayalane TC, Leszczynski J (2009) J Chem Phys 130:081101

    Article  CAS  Google Scholar 

  20. Dinadayalane TC, Leszczynski J (2009) Struct Chem 20:11

    Article  CAS  Google Scholar 

  21. Dinadayalane TC, Gorb L, Simeon T, Dodziuk H (2007) Int J Quantum Chem 107:2204

    Article  CAS  Google Scholar 

  22. Dinadayalane TC, Gorb L, Dodziuk H, Leszczynski J (2005) AIP Conf Proc 786:436

    Article  CAS  Google Scholar 

  23. Wheeler SE, Houk KN (2009) J Am Chem Soc 131:3126

    Article  CAS  Google Scholar 

  24. Umadevi D, Sastry GN (2011) J Phys Chem C 115:9656

    Article  CAS  Google Scholar 

  25. Amunugama R, Rodgers MT (2003) Int J Mass Spectrom 227:339

    Article  CAS  Google Scholar 

  26. Koyanagi GK, Bohme DK (2003) Int J Mass Spectrom 227:563

    Article  CAS  Google Scholar 

  27. Hunter CA, Low CMR, Rotger C, Vinter JG, Zonta C (2002) Proc Natl Acad Sci USA 99:4873

    Article  CAS  Google Scholar 

  28. Suresh CH, Gadre SR (2007) J Phys Chem A 111:710

    Article  CAS  Google Scholar 

  29. McMahon TB, Ohanessian G (2000) Chem Eur J 6:2931

    Article  CAS  Google Scholar 

  30. Armentrout PB, Rodgers MT (2000) J Phys Chem A 104:2238

    Article  CAS  Google Scholar 

  31. Kumpf RA, Daugherty DA (1993) Science 261:1708

    Article  CAS  Google Scholar 

  32. Mecozzi S, West AP Jr, Dougherty DA (1996) J Am Chem Soc 118:2307

    Article  CAS  Google Scholar 

  33. Dougherty DA (1996) Science 271:163

    Article  CAS  Google Scholar 

  34. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  35. Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459

    Article  CAS  Google Scholar 

  36. Zacharias N, Dougherty DA (2002) Trends Pharmacol Sci 23:281

    Article  CAS  Google Scholar 

  37. Gal J-F, Maria P-C, Decouzon M, Mó O, Yáñez M, Abboud JLM (2003) J Am Chem Soc 125:10394

    Article  CAS  Google Scholar 

  38. Amunugama R, Rodgers MT (2003) Int J Mass Spectrom 227:1

    Article  CAS  Google Scholar 

  39. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582

    Article  CAS  Google Scholar 

  40. Vijay D, Sastry GN (2010) Chem Phys Lett 485:235

    Article  CAS  Google Scholar 

  41. Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) J Phys Chem B 110:2479

    Article  CAS  Google Scholar 

  42. Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) J Phys Chem B 110:10206

    Article  CAS  Google Scholar 

  43. Vijay D, Zipse H, Sastry GN (2008) J Phys Chem B 112:8863

    Article  CAS  Google Scholar 

  44. Escudero D, Frontera A, Quiñonero D, Deyà PM (2008) Chem Phys Lett 456:257

    Article  CAS  Google Scholar 

  45. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2009) Chem Phys Lett 479:316

    Article  CAS  Google Scholar 

  46. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Theor Chem Acc 126:1

    Article  CAS  Google Scholar 

  47. Macias AT, Norton JE, Evanseck JD (2003) J Am Chem Soc 125:2351

    Article  CAS  Google Scholar 

  48. Siegel JS (1994) Angew Chem Int Ed Engl 33:1721

    Article  Google Scholar 

  49. Frank NL, Baldridge KK, Gantzel P, Siegel JS (1995) Tetrahedron Lett 36:4389

    Article  CAS  Google Scholar 

  50. Frank NL, Baldridge KK, Siegel JS (1995) J Am Chem Soc 117:2102

    Article  CAS  Google Scholar 

  51. Bürgi H-B, Baldridge KK, Hardcastle K, Frank NL, Gantzel P, Siegel JS, Ziller J (1995) Angew Chem Int Ed Engl 34:1454

    Article  Google Scholar 

  52. Higashibayashi S, Reza AFGM, Sakurai H (2010) J Org Chem 75:4626

    Article  CAS  Google Scholar 

  53. Fabris F, Pellizzaro L, Zonta C, De Lucchi O (2007) Eur J Org Chem, p 283

  54. Zonta C, Fabris F, De Lucchi O (2005) Org Lett 7:1003

    Article  CAS  Google Scholar 

  55. Dinadayalane TC, Deepa S, Reddy AS, Sastry GN (2004) J Org Chem 69:8111

    Article  CAS  Google Scholar 

  56. Dinadayalane TC, Deepa S, Sastry GN (2003) Tetrahedron Lett 44:4527

    Article  CAS  Google Scholar 

  57. Dinadayalane TC, Sastry GN (2002) J Org Chem 67:4605

    Article  CAS  Google Scholar 

  58. Dinadayalane TC, Priyakumar UD, Sastry GN (2001) J Mol Struct 543:1

    CAS  Google Scholar 

  59. Carrazana-García JA, Rodríguez-Otero J, Cabaleiro-Lago EM (2011) J Phys Chem B 115:2774

    Article  Google Scholar 

  60. Green JR, Dunbar RC (2011) J Phys Chem A 115:4968

    Article  CAS  Google Scholar 

  61. Engerer LK, Hanusa TP (2011) J Org Chem 76:42

    Article  CAS  Google Scholar 

  62. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  63. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  64. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  65. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  66. Weinhold F personal communication

  67. IOp keyword was suggested by Gaussian Help Desk

  68. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO, Version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc, Wallingford

  70. Dennington II R, Keith R, Millam T, Eppinnett J, Hovell K, Gilliland WL (2003) GaussView, Version 3.0. Semichem, Inc., Shawnee Mission, KS

  71. Aihara J, Ishida T (2010) J Phys Chem A 114:1093

    Article  CAS  Google Scholar 

  72. Stanger A (2008) J Phys Chem A 112:12849

    Article  CAS  Google Scholar 

  73. Mishra BK, Bajpai VK, Ramanathan V, Gadre SR, Sathyamurthy N (2008) Mol Phys 106:1557

    Article  CAS  Google Scholar 

  74. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  75. Amicangelo JC, Armentrout PB (2000) J Phys Chem A 104:11420

    Article  CAS  Google Scholar 

  76. Zhu W, Tan X, Shen J, Luo X, Cheng F, Puah CM, Ji R, Chen K, Jiang H (2003) J Phys Chem A 107:2296

    Article  CAS  Google Scholar 

  77. Cheng J, Zhu W, Tang Y, Xu Y, Li Z, Chen K, Jiang H (2006) Chem Phys Lett 422:455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the support of the NSF CREST Interdisciplinary Center for Nanotoxicity, Grant # HRD-0833178; NSF-EPSCoR Award #: 362492-190200-01\NSFEPS-0903787. We acknowledge Prof. F. Weinhold for discussion on NPA charges. Mississippi Center for Supercomputing Research (MCSR) is acknowledged for generous computational facilities. We also thank Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) and ONR for providing computational facilities through ERDC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tandabany C. Dinadayalane or Jerzy Leszczynski.

Additional information

Dedicated to Professor Eluvathingal D. Jemmis and published as part of the special collection of articles celebrating his 60th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinadayalane, T.C., Hassan, A. & Leszczynski, J. A theoretical study of cation--π interactions: Li+, Na+, K+, Be2+, Mg2+ and Ca2+ complexation with mono- and bicyclic ring-fused benzene derivatives. Theor Chem Acc 131, 1131 (2012). https://doi.org/10.1007/s00214-012-1131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1131-0

Keywords

Navigation