Skip to main content
Log in

Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Decreased GABAB receptor function is proposed to mediate some symptoms of schizophrenia.

Objectives

In this study, we tested the effect of CGP7930, a GABAB receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats.

Methods

Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection.

Results

CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65–100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABAB receptor function in vivo.

Conclusions

CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel KM, Allin MP, Hemsley DR, Geyer MA (2003) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Waldo MC, Freedman R (1985) Neurophysiologic studies of sensory gating in schizophrenia: comparison of auditory and visual responses. Biol Psychiatry 20:1284–1296

    Article  CAS  PubMed  Google Scholar 

  • Arai S, Takuma K, Mizoguchi H, Ibi D, Nagai T, Takahashi K, Kamei H, Nabeshima T, Yamada K (2008) Involvement of pallidotegmental neurons in methamphetamine- and MK-801-induced impairment of prepulse inhibition of the acoustic startle reflex in mice: reversal by GABAB receptor agonist baclofen. Neuropsychopharmacology 33:3164–3175

    Article  CAS  PubMed  Google Scholar 

  • Bak N, Rostrup E, Larsson HB, Glenthøj BY, Oranje B (2014) Concurrent functional magnetic resonance imaging and electroencephalography assessment of sensory gating in schizophrenia. Hum Brain Mapp 35:3578–3587

    Article  PubMed  Google Scholar 

  • Bakshi VP, Geyer MA (1998) Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. J Neurosci 18:8394–8401

    CAS  PubMed  Google Scholar 

  • Baldeweg T, Spence S, Hirsch S, Gruzelier J (1998) γ-Band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 352:620–621

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  CAS  PubMed  Google Scholar 

  • Boeijinga PH, Soufflet L, Santoro F, Luthringer R (2007) Ketamine effects on CNS responses assessed with MEG/EEG in a passive auditory sensory-gating paradigm: an attempt for modelling some symptoms of psychosis in man. J Psychopharmacol 21:321–337

    Article  CAS  PubMed  Google Scholar 

  • Bortolato M, Frau R, Aru GN, Orrù M, Gessa GL (2004) Baclofen reverses the reduction in prepulse inhibition of the acoustic startle response induced by dizocilpine, but not by apomorphine. Psychopharmacology 171:322–330

    Article  CAS  PubMed  Google Scholar 

  • Bortolato M, Frau R, Orrù M, Piras AP, Fà M, Tuveri A, Puligheddu M, Gessa GL, Castelli MP, Mereu G, Marrosu F (2007) Activation of GABA(B) receptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology 194:361–369

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6:37–43

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  CAS  PubMed  Google Scholar 

  • Brankack J, Buzsaki G (1986) Hippocampal responses evoked by tooth pulp and acoustic stimulation: depth profiles and effect of behavior. Brain Res 378:303–314

    Article  CAS  PubMed  Google Scholar 

  • Brody SA, Geyer MA, Large CH (2003) Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology 169:240–246

    Article  CAS  PubMed  Google Scholar 

  • Caine SB, Geyer MA, Swerdlow NR (1992) Hippocampal modulation of acoustic startle and prepulse inhibition in the rat. Pharmacol Biochem Behav 43:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Caixeta FV, Cornelio AM, Scheffer-Teixeira R, Ribeiro S, Adriano BL, Tort ABL (2013) Ketamine alters oscillatory coupling in the hippocampus. Sci Rep 3:2348. doi:10.1038/srep02348

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, Ruhlmann C, Jones SR, Deisseroth K, Sheng M, Moore CI, Tsai LH (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 17:537–548

    Article  PubMed  Google Scholar 

  • Cedillo LN, Miranda F (2013) Effects of co-administration of the GABAB receptor agonist baclofen and a positive allosteric modulator of the GABAB receptor, CGP7930, on the development and expression of amphetamine-induced locomotor sensitization in rats. Pharmacol Rep 65:1132–1143

    Article  CAS  PubMed  Google Scholar 

  • Cilia J, Hatcher P, Reavill C, Jones DN (2007) (+/−) Ketamine-induced prepulse inhibition deficits of an acoustic startle response in rats are not reversed by antipsychotics. J Psychopharmacol 21:302–311

    Article  CAS  PubMed  Google Scholar 

  • Clementz BA, Blumenfeld LD, Cobb S (1997) The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8:3889–3893

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357

    Article  CAS  PubMed  Google Scholar 

  • Cordon I, Nicolás MJ, Arrieta S, Lopetegui E, López-Azcárate J, Alegre M, Artieda J, Valencia M (2015) Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia. Eur Neuropsychopharmacol 25:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • de Bruin NM, Ellenbroek BA, Cools AR, Coenen AM, van Luijtelaar EL (1999) Differential effects of ketamine on gating of auditory evoked potentials and prepulse inhibition in rats. Psychopharmacology 142:9–17

    Article  PubMed  Google Scholar 

  • Erhardt S, Mathe JM, Chergui K, Engberg G, Svensson TH (2002) GABA(B) receptor-mediated modulation of the firing pattern of ventral tegmental area dopamine neurons in vivo. Naunyn Schmiedeberg's Arch Pharmacol 365:173–180

    Article  CAS  Google Scholar 

  • Fatemi SH, Folsoma TD, Thurasd PD (2011) Deficits in GABAB receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 128:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatemi SH, Folsom TD, Rooney RJ, Thuras PD (2013) Expression of GABAA a2-, b1- and e-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry 3:e303. doi:10.1038/tp.2013.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fejgin K, Pålsson E, Wass C, Finnerty N, Lowry J, Klamer D (2009) Prefrontal GABA(B) receptor activation attenuates phencyclidine-induced impairments of prepulse inhibition: involvement of nitric oxide. Neuropsychopharmacology 34:1673–1684

    Article  CAS  PubMed  Google Scholar 

  • Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec L, Mierzejewsk P, Bienkowski P, Przegaliński E, Cryan JF (2015) GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 88:36–47

    Article  CAS  PubMed  Google Scholar 

  • Frau R, Bini V, Pillolla G, Malherbe P, Pardu A, Thomas AW, Devoto P, Bortolato M (2014) Positive allosteric modulation of GABA-B receptors ameliorates sensorimotor gating in rodent models. CNS Neurosci Ther 20:679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:345–470

    CAS  Google Scholar 

  • Gill KM, Grace AA (2014) The role of alpha5 GABAA receptor agonists in the treatment of cognitive deficits in schizophrenia. Curr Pharm Des 20:5069–5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    CAS  PubMed  Google Scholar 

  • Hakami T, Jones NC, Tolmacheva EA, Gaudias J, Chaumont J, Salzberg M, O’Brien TJ, Pinault D (2009) NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness. PLoS One 4:e6755

    Article  PubMed  PubMed Central  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell. Neuroscience 41:89–125

    Article  CAS  PubMed  Google Scholar 

  • Hunt MJ, Falinska M, Łeski S, Wójcik DK, Kasicki S (2011) Differential effects produced by ketamine on oscillatory activity recorded in the rat hippocampus, dorsal striatum and nucleus accumbens. J Psychopharmacol 25:808–821

    Article  CAS  PubMed  Google Scholar 

  • Irifune M, Shimizu T, Nomoto M (1991) Ketamine-induced hyperlocomotion associated with alteration of presynaptic components of dopamine neurons in the nucleus accumbens of mice. Pharmacol Biochem Behav 40:399–407

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Mizukami K, Iwakiri M, Asada T (2005) Immunohistochemical and immunoblot analysis of gamma-aminobutyric acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Lett 383:272–277

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, Watson DJG, Fone KCF (2011) Animal models of schizophrenia. Brit J Pharm. doi:10.1111/j.1476-5381.2011.01386.x

  • Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409

    Article  CAS  PubMed  Google Scholar 

  • Kleinloog D, Uit den Boogaard A, Dahan A, Mooren R, Klaassen E, Stevens J, Freijer J, van Gerven J (2015) Optimizing the glutamatergic challenge model for psychosis, using S+-ketamine to induce psychomimetic symptoms in healthy volunteers. J Psychopharmacol 29:401–413

    Article  CAS  PubMed  Google Scholar 

  • Koch M (1996) The septohippocampal system is involved in prepulse inhibition of the acoustic startle response in rats. Behav Neurosci 110:468–477

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97:71–82

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    Article  CAS  PubMed  Google Scholar 

  • Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ (2010) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22:1452–1464

    Article  PubMed  Google Scholar 

  • Lee K-H, Willams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41:57–78

    Article  PubMed  Google Scholar 

  • Leung LW (1985) Spectral analysis of hippocampal EEG in the freely moving rat: effects of centrally active drugs and relations to evoked potentials. Electroencephalogr Clin Neurophysiol 60:65–77

    Article  CAS  PubMed  Google Scholar 

  • Leung LS (1998) Generation of theta and gamma rhythms in the hippocampus. Neurosci Biobehav Rev 22:275–290

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Ma J (2016) Ketamine mediates psychosis through the medial septum, hippocampus and nucleus accumbens. In: “Neuropathology of drug addictions and substance misuse”. Preedy VR (ed) Stimulants, club and dissociative drugs, hallucinogens, steroids, inhalants, and international aspects, vol 2. Academic Press, London, pp 661–671

  • Leung LS, Shen B (2007) GABAB receptor blockade enhances theta and gamma rhythms in the hippocampus of behaving rats. Hippocampus 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Lopes da Silva FH, Wadman WJ (1982) Spectral characteristics of the hippocampal EEG in the freely moving rat. Electroencephalogr Clin Neurophysiol 54:203–219

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Canning KJ, Peloquin P (2008) Paired-pulse depression of excitatory postsynaptic current sinks in hippocampal CA1 in vivo. Hippocampus 18:1008–1020

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Jin M, Chu L, Ma J (2016) Positive allosteric modulator of GABAB receptor alters behavioral effects but not afterdischarge progression induced by partial hippocampal kindling. Neuropharmacology 110:154–164

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Leung LS (2000) Relation between hippocampal gamma waves and behavioral disturbances induced by phencyclidine and methamphetamine. Behav Brain Res 111:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Leung LS (2007) The supramammillo-septal-hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats. Psychopharmacology 191:961–974

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Leung LS (2011) GABA(B) receptor blockade in the hippocampus affects sensory and sensorimotor gating in Long-Evans rats. Psychopharmacology 217:167–176

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Leung LS (2014) Deep brain stimulation of the medial septum or nucleus accumbens alleviates psychosis-relevant behavior in ketamine-treated rats. Behav Brain Res 266:174–182

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Leung LS (2016) Effects of hippocampal partial kindling on sensory and sensorimotor gating and methamphetamine-induced locomotion in kindling-prone and kindling-resistant rats. Epilepsy Behav 58:119–126

    Article  PubMed  Google Scholar 

  • Ma J, Shen B, Rajakumar N, Leung LS (2004) The medial septum mediates impairment of prepulse inhibition of acoustic startle induced by a hippocampal seizure or phencyclidine. Behav Brain Res 155:153–166

    Article  PubMed  Google Scholar 

  • Ma J, Tai SK, Leung LS (2009) Ketamine-induced gating deficit of hippocampal auditory evoked potentials in rats is alleviated by medial septum inactivation and antipsychotic drugs. Psychopharmacology 206:457–467

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Tai SK, Leung LS (2012) Septohippocampal GABAergic neurons mediate the altered behaviors induced by N-methyl-D-aspartate receptor antagonists. Hippocampus 22:2208–2218

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Mufti A, Leung LS (2015) Effects of memantine on hippocampal long-term potentiation, gamma activity, and sensorimotor gating in freely moving rats. Neurobiol Aging 36:2544–2554

    Article  CAS  PubMed  Google Scholar 

  • Mann EO, Radcliffe CA, Paulsen O (2005) Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol 562:55–63

    Article  CAS  PubMed  Google Scholar 

  • Miller CL, Freedman R (1993) Medial septal neuron activity in relation to an auditory sensory gating paradigm. Neuroscience 55:373–380

    Article  CAS  PubMed  Google Scholar 

  • Miller CL, Freedman R (1995) The activity of hippocampal interneurons and pyramidal cells during the response of the hippocampus to repeated auditory stimuli. Neurosci 69:371–381

    Article  CAS  Google Scholar 

  • Miller CL, Bickford PC, Luntz-Leybman V, Adler LE, Gerhardt GA, Freedman R (1992) Phencyclidine and auditory sensory gating in the hippocampus of the rat. Neuropharmacology 31:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Mizukami K, Ishikawa M, Hidaka S, Iwakiri M, Sasaki M, Iritani S (2002) Immunohistochemical localization of GABAB receptor in the entorhinal cortex and inferior temporal cortex of schizophrenic brain. Prog Neuro-Psychopharmacol Biol Psychiatry 26:393–396

    Article  CAS  Google Scholar 

  • Mogenson GJ, Brudzynski SM, Wu M, Yang CR, Yim CCY (1993) From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-ventral pallidum-pedunculopontine nucleus circuitries involved in limbic-motor integration. In: Barnes PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC, Boca Raton, pp 193–225

    Google Scholar 

  • Moghaddam B, Krystal JH (2012) Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38:942–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Moxon KA, Gerhardt GA, Gulinello M, Adler LE (2003) Inhibitory control of sensory gating in a computer model of the CA3 region of the hippocampus. Biol Cybern 88:247–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller TM, Remedies CE, Haroutunian V, Meador-Woodruff JH (2015) Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain. Transl Psychiatry 5:e612. doi:10.1038/tp.2015.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulert C, Kirsch V, Pascual-Marqui R, McCarley RW, Spencer KM (2011) Long-range synchrony of γ oscillations and auditory hallucination symptoms in schizophrenia. Int J Psychophysiol 79:55–63

    Article  CAS  PubMed  Google Scholar 

  • Oranje B, Gispen-de Wied CC, Verbaten MN, Kahn RS (2002) Modulating sensory gating in healthy volunteers: the effects of ketamine and haloperidol. Biol Psychiatry 52:887–895

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pitman KA, Puil E, Borgland SL (2014) GABA(B) modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci 40:3472–3480

    Article  PubMed  Google Scholar 

  • Satow A, Suzuki G, Maehara S, Hikichi H, Murai T, Murai T, Kawagoe-Takaki H, Hata M, Ito S, Ozaki S, Kawamoto H, Ohta H (2009) Unique antipsychotic activities of the selective metabotropic glutamate receptor 1 allosteric antagonist 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one. J Pharmacol Exp Ther 330:179–190

    Article  CAS  PubMed  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (1990) GABAergic projection from nucleus accumbens to ventral pallidum mediates dopamine-induced sensorimotor gating deficits of acoustic startle in rats. Brain Res 532:146–150

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA (1998) Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology 140:75–80

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Nagai T, Kamei H, Maeda K, Matsuya T, Arai S et al (2007) Neural circuits containing pallidotegmental GABAergic neurons are involved in the prepulse inhibition of the startle reflex in mice. Biol Psychiatry 62:148–157

    Article  CAS  PubMed  Google Scholar 

  • Tikka SK, Nizamie SH, Das B, Katshu MZ, Goyal N (2013) Increased spontaneous gamma power and synchrony in schizophrenia patients having higher minor physical anomalies. Psychiatry Res 207:164–172

    Article  PubMed  Google Scholar 

  • Tsai ML, Crutchley MC, Boyce R, Ma J, Boon F, Cain DP, Leung LS (2012) Long-lasting auditory gating deficit accompanied by GABAB receptor dysfunction in the hippocampus after early-life limbic seizures in rats. Physiol Behav 106:534–541

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–114

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S (2011) Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63:59e126

    Article  Google Scholar 

  • van Berckel BN, Oranje B, van Ree JM, Verbaten MN, Kahn RS (1998) The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology 137:271–281

    Article  PubMed  Google Scholar 

  • Wierońska JM, Kusek M, Tokarski K, Wabno J, Froestl W, Pilc A (2011) The GABA B receptor agonist CGP44532 and the positive modulator GS39783 reverse some behavioural changes related to positive syndromes of psychosis in mice. Br J Pharmacol 163:1034–1047

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was financially supported by operating grants from the Natural Sciences and Engineering Research Council of Canada (1037-2013), the Canadian Institutes of Health Research (MOP-15685), and EpLink, the Epilepsy Research Program of the Ontario Brain Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Stan Leung, L. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats. Psychopharmacology 234, 3129–3142 (2017). https://doi.org/10.1007/s00213-017-4705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4705-7

Keywords

Navigation