Skip to main content
Log in

Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Lamotrigine, a broad-spectrum anticonvulsant known to block brain sodium channels, is effective in the treatment of persons with bipolar disorder, perhaps by virtue of its ability to reduce glutamate release. Furthermore, lamotrigine decreases the perceptual abnormalities produced by the N-methyl-d-aspartate (NMDA) antagonist ketamine in humans, similar to the effects of the atypical antipsychotic clozapine. Acutely manic bipolar patients, like persons with schizophrenia, Tourette's, and obsessive compulsive disorder, exhibit decreases in sensorimotor gating, as measured by prepulse inhibition of the startle response (PPI).

Objective

We assessed the ability of lamotrigine to reduce the PPI–disruptive effects of ketamine and the dopaminergic agent amphetamine in two inbred mouse strains, C57BL/6J and 129SvPasIco.

Methods

Mice were tested in a standard PPI paradigm after administration of lamotrigine (0, 6.7, 13, or 27 mg/kg) or a combination of lamotrigine (27 mg/kg) and either d-amphetamine (10 mg/kg) or ketamine (100 mg/kg).

Results

In the 129SvPasIco mice, lamotrigine reversed the ketamine-induced PPI deficit, without altering PPI in control mice. In C57BL/6J mice, however, 27 mg/kg lamotrigine generally increased PPI in both control and ketamine-treated mice. Lamotrigine did not ameliorate the amphetamine-induced PPI deficit in either strain.

Conclusions

In conclusion, lamotrigine can increase PPI on its own and prevent ketamine-induced, but not amphetamine-induced, disruptions of PPI. These results suggest that lamotrigine may exert its effects on PPI through the glutamatergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A, B.

Similar content being viewed by others

References

  • Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    CAS  PubMed  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084

    Google Scholar 

  • Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, Krystal JH (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-d-aspartate receptor antagonists. Arch Gen Psychiatry 57:270–276

    Article  CAS  PubMed  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry 47:181–188

    CAS  PubMed  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    CAS  PubMed  Google Scholar 

  • Cadenhead KS, Geyer MA, Braff DL (1993) Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. Am J Psychiatry 150:1862–1867

    CAS  PubMed  Google Scholar 

  • Calabrese JR, Bowden CL, Sachs GS, Ascher JA, Monaghan E, Rudd GD (1999) A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. J Clin Psychiatry 60:79–88

    CAS  PubMed  Google Scholar 

  • Calabrese JR, Suppes T, Bowden CL, Sachs GS, Swann AC, McElroy SL, Kusumakar V, Ascher JA, Earl NL, Greene PL, Monaghan ET (2000) A double-blind, placebo-controlled, prophylaxis study of lamotrigine in rapid-cycling bipolar disorder. J Clin Psychiatry 61:841–850

    CAS  PubMed  Google Scholar 

  • Corbett R, Camacho F, Woods AT, Kerman LL, Fishkin RJ, Brooks K, Dunn RW (1995) Antipsychotic agents antagonize non–competitive N-methyl-d-aspartate antagonist-induced behaviors. Psychopharmacology 120:67–74

    CAS  PubMed  Google Scholar 

  • Cunningham MO, Jones RSG (2000) The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology 39:2139–2146

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Geyer MA (1996) Psychopharmacology of prepulse inhibition in mice. Chin J Physiol 39:139–146

    CAS  PubMed  Google Scholar 

  • Geyer MA, Swerdlow NR (1998) Measurement of the startle response, prepulse inhibition, and habituation. In: Crawley JN, Skolnick P (eds) Current protocols in neuroscience. Wiley, New York, pp 8.7.1–8.7.15

  • Geyer MA, Swerdlow NR, Mansbach RS, Braff DL (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 25:485–498

    CAS  PubMed  Google Scholar 

  • Geyer MA, Braff DL, Swerdlow NR (1999) Startle-response measures of information processing in animals: relevance to schizophrenia. In: Haug M, Whalen RE (eds) Animal models of human emotion and cognition. APA Books, Washington, pp 103–116

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    CAS  PubMed  Google Scholar 

  • Goff DC, Wine L (1997) Glutamate in schizophrenia: clinical and research implications. Schizophr Res 27:157–168

    CAS  PubMed  Google Scholar 

  • Herrling P (1994) D–CPPene (SDZ EAA 494), a competitive NMDA antagonist. Results from animal models and first results in humans. Neuropsychopharmacology 10:591S

    Google Scholar 

  • Ison JR, Hoffman HS (1983) Reflex modification in the domain of startle. II. The anomalous history of a robust and ubiquitous phenomenon. Psychol Bull 94:3–17

    CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    CAS  PubMed  Google Scholar 

  • Kumari V, Soni W, Sharma T (2002) Prepulse inhibition of the startle response in risperidone-treated patients: comparison with typical antipsychotics. Schizophr Res 55:139–146

    PubMed  Google Scholar 

  • Lahti AC, Koffel B, Laporte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  CAS  PubMed  Google Scholar 

  • Lingamaneni R, Hemmings HC (1999) Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes. Neurosci Lett 276:127–130

    Article  CAS  PubMed  Google Scholar 

  • Linn GS, Javitt DC (2001) Phencyclidine (PCP)–induced deficits of prepulse inhibition in monkeys. Neuroreport 12:117–120

    CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    CAS  PubMed  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    CAS  PubMed  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 94:507–514

    CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    CAS  PubMed  Google Scholar 

  • Ouagazzal AM, Jenck F, Moreau JL (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology 156:273–283

    Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 132:169–180

    Google Scholar 

  • Perry W, Minassian A, Feifel D, Braff DL (2001) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424

    CAS  PubMed  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang Y–M, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2 but not D3 or D4 receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    Google Scholar 

  • Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448

    Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    CAS  PubMed  Google Scholar 

  • Varty GB, Walters N, Cohen-Williams M, Carey GJ (2001) Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. Eur J Pharmacol 424:27–36

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Maguire RP, Leenders KL, Mathys K, Angst J (1998) Effects of high amphetamine dose on mood and cerebral glucose metabolism in normal volunteers using positron emission tomography (PET). Psychiatry Res 83:149–162

    Article  CAS  PubMed  Google Scholar 

  • Yatham LN, Kusumakar V, Calabrese JR, Rao R, Scarrow G, Kroeker G (2002) Third generation anticonvulsants in bipolar disorder: a review of efficacy and summary of clinical recommendations. J Clin Psychiatry 63:275–283

    CAS  PubMed  Google Scholar 

  • Yenari MA, Bell TE, Kotake AN, Powell M, Steinberg GK (1998) Dose escalation safety and tolerance study of the competitive NMDA antagonist Selfotel (CGS 19755) in neurosurgery patients. Clin Neuropharmacol 21:28–34

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Geyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brody, S.A., Geyer, M.A. & Large, C.H. Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology 169, 240–246 (2003). https://doi.org/10.1007/s00213-003-1421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1421-2

Keywords

Navigation