Skip to main content

Advertisement

Log in

Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer’s disease mouse model: possible involvement of the cholinergic system

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Sporadic Alzheimer’s disease (SAD) is a slowly progressive neurological disorder that is the most common form of dementia. Cholinergic system dysfunction and amyloid beta formation are the two main underlying pathological mechanisms for the disease development. In recent studies, insulin receptor desensitization and disturbances in the downstream effects of insulin receptor signaling were observed in the brains of Alzheimer’s patients. Currently, intracereberoventricular (ICV) injection of streptozotocin (STZ) is found to induce behavioral, neurochemical, and structural alterations in animals resembling those found in SAD patients. Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was recently shown to regulate the transcription of several genes in both in vivo and in vitro models of Alzheimer’s disease. The aim of the current study is to investigate the potential effect of different doses of valproic acid, in an ICV-STZ-induced animal model of SAD. Streptozotocin-injected mice showed cognitive and spatial memory dysfunction in the Y-maze, object recognition test, and Morris water maze (MWM) neurobehavioral tests. The mice also exhibited a decrease in acetylcholine (ACh) and neprilysin (NEP) levels accompanied by an increase in acetylcholinesterase (AChE) activity. For the first time to our knowledge, our findings have shown that VPA is capable of restoring ACh levels in ICV-STZ-injected mice, as well as normalizing both NEP levels and AChE activity. Via this mechanism, an enhancement of cognitive functions is observed. Thus, VPA is suggested to be a promising therapeutic approach against SAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56(4):779–787

    Article  CAS  PubMed  Google Scholar 

  • Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110

    Article  CAS  PubMed  Google Scholar 

  • Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10(1):94–100

    Article  CAS  PubMed  Google Scholar 

  • Benice TS, Rizk A, Kohama S, Pfankuch T, Raber J (2006) Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 137(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Bernardi A, Frozza RL, Meneghetti A, Hoppe JB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego CG (2012) Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int J Nanomedicine 7(January):4927–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403

    Article  CAS  PubMed  Google Scholar 

  • Blokland A, Jolles J (1994) Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats. Pharmacol Biochem Behav 47(4):833–837

    Article  CAS  PubMed  Google Scholar 

  • Blokland A, Geraerts E, Been M (2004) A detailed analysis of rats’ spatial memory in a probe trial of a Morris task. Behav Brain Res 154(1):71–75

    Article  PubMed  Google Scholar 

  • Botton PH, Costa MS, Ardais AP, Mioranzza S, Souza DO, da Rocha JBT, Porciúncula LO (2010) Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav Brain Res 214(2):254–259

    Article  CAS  PubMed  Google Scholar 

  • Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learning & Memory (Cold Spring Harbor, N.Y.) 17(1):5–11

    Article  Google Scholar 

  • Castillo-Carranza DL, Guerrero-Muñoz MJ, Sengupta U, Hernandez C, Barrett ADT, Dineley K, Kayed R (2015) Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimer’s disease mouse model. J Neurosci 35(12):4857–4868

    Article  CAS  PubMed  Google Scholar 

  • Chang P, Walker MC, Williams RSB (2014) Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 62:296–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhu T, Liang Z, Sun S, Dai C-L, Lee MH, LaFerla FM et al (2012) Brain gene expression of a sporadic (Icv-STZ mouse) and a familial mouse model (3xTg-AD Mouse) of Alzheimer’s disease. PLoS One 7(12):e51432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ (2000) Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. The Biochemical Journal 351(Pt 2):509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-García JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A 107(6):2652–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha MP, Pazini FL, Oliveira Á, Bettio LEB, Rosa JM, Machado DG, Rodrigues ALS (2013) The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 44:39–50

    Article  CAS  Google Scholar 

  • Cunha MP, Pazini FL, Rosa JM, Ramos-Hryb AB, Oliveira Á, Kaster MP, Rodrigues ALS (2015) Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A1 and A2A receptor activation. Purinergic Signalling 11(2):215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Dash PK, Orsi SA, Moore AN (2009) Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience 163(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—a PDE1 inhibitor. Eur J Pharmacol 620(1–3):49–56

    Article  CAS  PubMed  Google Scholar 

  • Dhull DK, Jindal A, Dhull RK, Aggarwal S, Bhateja D, Padi SSV (2012) Neuroprotective effect of cyclooxygenase inhibitors in ICV-STZ induced sporadic Alzheimer’s disease in rats. Journal of Molecular Neuroscience : MN 46(1):223–235

    Article  CAS  PubMed  Google Scholar 

  • Dunning CJ, McGauran G, Willén K, Gouras GK, O’Connell DJ, Linse S (2016) Direct high affinity interaction between Aβ42 and GSK3α stimulates hyperphosphorylation of tau. A new molecular link in Alzheimer’s disease? ACS Chemical Neuroscience American Chemical Society 7(2):161–170

    Article  CAS  Google Scholar 

  • ELLMAN GL (1959) Tissue Sulfhydryl Groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215(2):244–254

    Article  CAS  PubMed  Google Scholar 

  • Farr SA, Sandoval KE, Niehoff ML, Witt KA, Kumar VB, Morley JE (2016) Peripheral administration of GSK-3β antisense oligonucleotide improves learning and memory in SAMP8 and Tg2576 mouse models of Alzheimer’s disease. Edited by William Banks, IOS Press J Alzheimers Dis 54(4):1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447(7141):178–182

    Article  CAS  PubMed  Google Scholar 

  • Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ (2007) Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 32(10):1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Frumberg DB, Fernando MS, Lee DE, Biegon A, Schiffer WK (2007) Metabolic and behavioral deficits following a routine surgical procedure in rats. Brain Res 1144:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskin S, Tardif M, Cole E, Piterkin P, Kayello L, Mumby DG (2010) Object familiarization and novel-object preference in rats. Behav Process 83(1):61–71

    Article  Google Scholar 

  • Gilberstadt ML, Russell JA (1984) Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions. Anal Biochem 138(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Goulart BK, de Lima MNM, de Farias CB, Reolon GK, Almeida VR, Quevedo J, Kapczinski F, Schröder N, Roesler R (2010) Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels. Neuroscience 167(4):969–973

    Article  CAS  PubMed  Google Scholar 

  • Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 28(45):11500–11510

    CAS  Google Scholar 

  • Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Gupta LK (2012) Improvement in long term and visuo-spatial memory following chronic pioglitazone in mouse model of Alzheimer’s disease. Pharmacol Biochem Behav 102(2):184–190

    Article  CAS  PubMed  Google Scholar 

  • Haettig J, Stefanko DP, Multani ML, Figueroa DX, McQuown SC, Wood MA (2011) HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learning & Memory (Cold Spring Harbor, N.Y.) 18(2):71–79

    Article  CAS  Google Scholar 

  • Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82(1):26–34

    Article  PubMed  Google Scholar 

  • Harada H, Hosonuma K, Fujii T, Kawashima K (2000) Enhancement of cerebral cortical acetylcholine release by intraperitoneal acetic acid and its suppression by analgesics in freely moving rats. Neurosci Lett 284(3):163–166

    Article  CAS  PubMed  Google Scholar 

  • Hidaka N, Suemaru K, Takechi K, Li B, Araki H (2011) Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 65(4):269–277

    CAS  PubMed  Google Scholar 

  • Hoyer S (2002) The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. Journal of Neural Transmission (Vienna, Austria : 1996) 109(7–8):991–1002

    Article  CAS  Google Scholar 

  • Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Ishrat T, Badruzzaman Khan M, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Israël M, Lesbats B (1982) Application to mammalian tissues of the chemiluminescent method for detecting acetylcholine. J Neurochem 39(1):248–250

    Article  PubMed  Google Scholar 

  • Jessberger S, Nakashima K, Clemenson GD, Mejia E, Mathews E, Ure K, Ogawa S, Sinton CM, Gage FH, Hsieh J (2007) Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 27(22):5967–5975

    CAS  Google Scholar 

  • Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E (2010) Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol 223(2):422–431

    Article  CAS  PubMed  Google Scholar 

  • Kamei D, Yamakawa K, Takegoshi Y, Mikami-Nakanishi M, Nakatani Y, Oh-Ishi S, Yasui H et al (2004) Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin E synthase-1. J Biol Chem 279(32):33684–33695

    Article  CAS  PubMed  Google Scholar 

  • Khalili M, Hamzeh F (2010) Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats. Iran Biomed J 14(1–2):59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 35(4):870–880

    Article  CAS  Google Scholar 

  • Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42(6):961–972

    Article  CAS  PubMed  Google Scholar 

  • De La Monte SM (2009) Insulin resistance and Alzheimer’s disease. BMB Rep 42(8):475–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai JS, Zhao C, Warsh JJ, Li PP (2006) Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 539(1–2):18–26

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112(5):1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu B, Sailhamer EA, Yuan Z, Shults C, Velmahos GC, deMoya M, Shuja F, Butt MU, Alam HB (2008) Cell Protective Mechanism of valproic acid in lethal hemorrhagic shock. Surgery 144(2):217–224

    Article  PubMed  Google Scholar 

  • Liu P, Zou L-B, Wang L-H, Jiao Q, Chi T-Y, Ji X-F, Jin G (2014) Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology 231(2):345–356

    Article  CAS  PubMed  Google Scholar 

  • Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16(10):669–694

    Article  PubMed  Google Scholar 

  • LU J-p, ZENG Y-q, SHEN H, ZHANG J, ZHU Y-g, CHEN X-c (2012) The effects of suberoylanilide hydroxamic acid on cognitive performance and cerebral tau phosphorylation in Alzheimer’s disease transgenic mice. Chin J Neurol 45(2):102–106

    CAS  Google Scholar 

  • Luszczki JJ, Wojcik-Cwikla J, Andres MM, Czuczwar SJ (2005) Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 30(5):958–973

    Article  CAS  Google Scholar 

  • McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47(2):425–432

    Article  CAS  PubMed  Google Scholar 

  • Mehan, S., A.Verma, K. L. Bedi, V. Sehgal, A. Gupta, H. Meena, and D. Sharma. (2011). Effect of mitogen activated protein kinase inhibitor in animal model of Alzheimer’s diseases. International Journal Of Pharma Professional ’ S Research 2 (1).

  • Monti B, Polazzi E, Contestabile A (2009) Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2(1):95–109

    Article  CAS  PubMed  Google Scholar 

  • Mumby DG, Glenn MJ, Nesbitt C, Kyriazis DA (2002) Dissociation in retrograde memory for object discriminations and object recognition in rats with perirhinal cortex damage. Behav Brain Res 132(2):215–226

    Article  PubMed  Google Scholar 

  • Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ (2012) Effect of sodium valproate administration on brain neprilysin expression and memory in rats. Journal of Molecular Neuroscience : MN 46(3):569–577

    Article  CAS  PubMed  Google Scholar 

  • Narenjkar J, Rahmati B (2012) The effect of saffranal on intracerebroventricular strepto-zotocin-induced cognitive deficits in rat. Journal of Basic and Clinical Pathophysiology 1(1):46–51

    Google Scholar 

  • Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 128(2):199–202

    Article  CAS  PubMed  Google Scholar 

  • Okamura N, Garau C, Duangdao DM, Clark SD, Jüngling K, Pape H-C, Reinscheid RK (2011) Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology 36(4):744–752

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AMM, Hawk JD, Abel T, Havekes R (2010) Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learning & Memory (Cold Spring Harbor, NY) 17(3):155–160

    Article  Google Scholar 

  • Paola V. (2011). The object recognition task: a new proposal for the memory performance study. In: Object recognition. InTech.

  • Pelleymounter MA, Joppa M, Carmouche M, Cullen MJ, Brown B, Murphy B, Grigoriadis DE, Ling N, Foster AC (2000) Role of corticotropin-releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther 293(3):799–806

    CAS  PubMed  Google Scholar 

  • Pelleymounter MA, Joppa M, Ling N, Foster AC (2002) Pharmacological evidence supporting a role for central corticotropin-releasing factor(2) receptors in behavioral, but not endocrine, response to environmental stress. J Pharmacol Exp Ther 302(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Pinton, Simone, T. B. Sampaio, R. M. Ramalho, C. M. P. Rodrigues, and C. W. Nogueira. (2013). P,p′-Methoxyl-diphenyl diselenide prevents neurodegeneration and glial cell activation induced by streptozotocin in rats-journal of Alzheimer’s disease-volume 33, number 1/2013- IOS Press.

  • Prickaerts J, De Vente J, Honig W, Steinbusch H, Ittersum MMV, Blokland A, Steinbusch HW (2000) Nitric oxide synthase does not mediate neurotoxicity after an I.c.v. injection of streptozotocin in the rat. Journal of Neural Transmission (Vienna, Austria : 1996) 107(7):745–766

    Article  CAS  Google Scholar 

  • Qin W, Peng Y, Ksiezak-Reding H, Ho L, Stetka B, Lovati E, Pasinetti GM (2006) Inhibition of cyclooxygenase as potential novel therapeutic strategy in N141I Presenilin-2 familial Alzheimer’s disease. Mol Psychiatry 11(2):172–181

    Article  CAS  PubMed  Google Scholar 

  • Qing H, He G, Ly PTT, Fox CJ, Staufenbiel M, Cai F, Zhang Z et al (2008) Valproic acid inhibits abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205(12):2781–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu WQ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273(49):32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, Zalinski J et al (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43(8):1609–1609

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    Article  CAS  Google Scholar 

  • Sarkisyan G, Hedlund PB (2009) The 5-HT7 receptor is involved in allocentric spatial memory information processing. Behav Brain Res 202(1):26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sberna G, Sáez-Valero J, Beyreuther K, Masters CL, Small DH (1997) The amyloid beta-protein of Alzheimer’s disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem 69(3):1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68(9):1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, Kiryu-Seo S et al (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276(24):21895–21901

    Article  CAS  PubMed  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2007) Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 52(3):836–843

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Sharma B, Jaggi AS, Singh N (2013) Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: possible involvement of PPAR-γ agonistic property. Journal of the Renin-Angiotensin-Aldosterone System: JRAAS 14(2):124–136

    Article  CAS  PubMed  Google Scholar 

  • Sodhi RK, Singh N (2013) Defensive effect of lansoprazole in dementia of AD type in mice exposed to streptozotocin and cholesterol enriched diet. PLoS One 8(7):e70487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonkusare S, Srinivasan K, Kaul C, Ramarao P (2005) Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci 77(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Stefanko DP, Barrett RM, Ly AR, Reolon GK, Wood MA (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci U S A 106(23):9447–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research/Academia Scientiarum Bohemoslovaca 50(6):537–546

    CAS  Google Scholar 

  • Taglialatela G, Hogan D, Zhang W-R, Dineley KT (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200(1):95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A 99(26):17095–17100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P et al (2001) Surfing the insulin signaling web. Eur J Clin Investig 31(11):966–977

    Article  CAS  Google Scholar 

  • Vavra JJ, Deboer C, Dietz A, Hanka LJ, Sokolski WT (1959) Streptozotocin, a new antibacterial antibiotic. Antibiotics Annual 7:230–235

    PubMed  Google Scholar 

  • Vecsey CG, Hawk JD, Matthew Lattal K, Stein JM, Fabian SA, Attner MA, Cabrera SM et al (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 27(23):6128–6140

    CAS  Google Scholar 

  • Wang J-F, Shao L, Sun X, Trevor Young L (2004) Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J Neurochem 88(6):1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18(4):737–752

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang R, Chen L, Bennett DA, Dickson DW, Wang D-S (2010a) Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer’s brain. J Neurochem 115(1):47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zheng W, Xie J-W, Wang T, Wang S-L, Teng W-P, Wang Z-Y (2010b) Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 5:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Warnock GI (2007) Study of the central corticotrophin-releasing factor system using the 2-deoxyglucose method for measurement of local cerebral glucose utilisation. University of Bath, Bath

    Google Scholar 

  • Yamada K, Tanaka T, Mamiya T, Shiotani T, Kameyama T, Nabeshima T (1999) Improvement by nefiracetam of beta-amyloid-(1-42)-induced learning and memory impairments in rats. Br J Pharmacol 126(1):235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim E, Zhang Z, Uz T, Chen C-q, Manev R, Manev H (2003) Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci Lett 345(2):141–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Pharmacology and Toxicology, Faculty of Pharmacy, German University in Cairo, Egypt, for providing the necessary technical facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Salah El Dine El Sayed.

Ethics declarations

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorial, M.E., El Sayed, N.S.E.D. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer’s disease mouse model: possible involvement of the cholinergic system. Naunyn-Schmiedeberg's Arch Pharmacol 390, 581–593 (2017). https://doi.org/10.1007/s00210-017-1357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1357-4

Keywords

Navigation