Skip to main content

Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach

  • Conference paper
Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

A growing body of evidence implicates impairments in brain insulin signaling in early sporadic Alzheimer disease (sAD) pathology. However, the most widely accepted hypothesis for AD aetiology stipulates that pathological aggregations of the amyloid β (Aβ) peptide are the cause of all forms of Alzheimer’s disease. Streptozotocin-intracerebroventricularly (STZ-icv) treated rats are proposed as a probable experimental model of sAD. The current work reviews evidence obtained from this model indicating that central STZ administration induces brain pathology and behavioural alterations resembling those in sAD patients. Recently, alterations of the brain insulin system resembling those in sAD have been found in the STZicv rat model and are associated with tau protein hyperphosphorylation and Aβ-like aggregations in meningeal vessels. In line with these findings the hypothesis has been proposed that insulin resistance in the brain might be the primary event which precedes the Aβ pathology in sAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p 58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19: 7300–7308

    PubMed  CAS  Google Scholar 

  • Adamo M, Raizada MK, LeRoith D (1989) Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 3: 71–100

    PubMed  CAS  Google Scholar 

  • Apelt J, Mehlhorn G, Schliebs R (1999) Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci Res 57: 693–705

    Article  PubMed  CAS  Google Scholar 

  • Arluison M, Quignon M, Thorens B, Leloup C, Penicaud L (2004a) Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. J Chem Neuroanat 28: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L (2004b) Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain — an immunohistochemical study. J Chem Neuroanat 28: 117–136

    Article  PubMed  CAS  Google Scholar 

  • Ar’Rajab A, Ahren B (1993) Long-term diabetogenic effect of streptozotocin in rats. Pancreas 8: 50–57

    Article  CAS  Google Scholar 

  • Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182: 31–48

    Article  PubMed  CAS  Google Scholar 

  • Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490: 5–12

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27: 595–600

    Article  PubMed  CAS  Google Scholar 

  • Baskin DG, Schwartz MW, Sipols AJ, D’Alessio DA, Goldstein BJ, White MF (1994) Insulin receptor substrate-1 (IRS-1) expression in rat brain. Endocrinology 134: 1952–1955

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JG, Duncan PM (1997) Effect of combinations of insulin, glucose and scopolamine on radial arm maze performance. Pharmacol Biochem Behav 58: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Jolies J (1993) Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. Pharmacol Biochem Behav 44: 491–494

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Jolies J (1994) Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats. Pharmacol Biochem Behav 47: 833–837

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Portha B (1989) Early appearance of in vivo insulin resistance in adult streptozotocin-injected rats. Diabetes Metab 15: 382–387

    CAS  Google Scholar 

  • Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34: 1341–1346

    Article  PubMed  CAS  Google Scholar 

  • Brant AM, Jess TJ, Milligan G, Brown CM, Gould GW (1993) Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system. Biochem Biophys Res Commun 192: 1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Chu WZ, Qian CY (2005) Expressions of Abetal-40, Abetal-42, tau202, tau396 and tau404 after intracerebroventricular injection of streptozotocin in rats. Di Yi Jun Yi Da Xue Xue Bao 25: 168–170

    PubMed  CAS  Google Scholar 

  • Cizza G, Calogero AE, Brady LS, Bagdy G, Bergamini E, Blackman MR, Chrousos GP, Gold PW (1994) Male Fischer 344/N rats show a progressive central impairment of the hypothalamic-pituitary-adrenal axis with advancing age. Endocrinology 134: 1611–1620

    Article  PubMed  CAS  Google Scholar 

  • Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55: 3320–3325

    Article  PubMed  CAS  Google Scholar 

  • Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s disease. Exp Gerontol 42: 10–21

    Article  PubMed  CAS  Google Scholar 

  • Combettes-Souverain M, Issad T (1998) Molecular basis of insulin action. Diabetes Metab 24: 477–489

    PubMed  CAS  Google Scholar 

  • Cook DG, Leverenz JB, McWellan PJ, Kuslstad JJ, Ericksen S, Roth RA, SChellenberg GD, Jin LW, Kovacina KS, Craft S (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol 162: 313–319

    PubMed  CAS  Google Scholar 

  • Cross DA, Watt PW, Shaw M, von der Kaay J, Downes CP, Holder JC, Cohen P (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activaties glycogen synthase by rapamycinsensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 406: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated protein kinase. Nature 378: 785–789

    Article  PubMed  CAS  Google Scholar 

  • de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimer Dis 10: 89–109

    Google Scholar 

  • de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7: 45–61

    PubMed  Google Scholar 

  • Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahn DS (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 269: 8445–8454

    PubMed  CAS  Google Scholar 

  • Ding A, Nitsch R, Hoyer S (1992) Changes in brain monoaminergic neurotransmitter concentrations in rat after intracerebroventricular injection of streptozotocin. J Cereb Blood Flow Metab 12: 103–109

    PubMed  CAS  Google Scholar 

  • Droge W (2005) Oxidative aging and insulin receptor signaling. J Gerontol A Biol Sci Med Sci 60: 1378–1385

    PubMed  Google Scholar 

  • Duelli R, Schrock H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12: 737–743

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Bentson K, Ocrant I (1993) The effect of insulin on norepinephrine uptake by PC12 cells. Brain Res Bull 32: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105: 423–438

    Article  PubMed  Google Scholar 

  • Gai W, Schott-Ohly P, Schulte im Walde S, Gleichmann H (2004) Differential target molecules for toxicity induced by streptozotocin and alloxan in pancreatic islets of mice in vitro. Exp Clin Endocrinol Diabetes 112: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneural β-amyloid and requires mitogen-activated protein kinase signalling. J Neurosci 21: 2561–2570

    PubMed  CAS  Google Scholar 

  • Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ (1993) Glucocorticoide regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest 91: 2020–2030

    Article  PubMed  CAS  Google Scholar 

  • Giorgino F, Chen JH, Smith RJ (1992) Changes in tyrosine phosphorylation of insulin receptors and a 170,000 molecular weight nonreceptor protein in vivo in skeletal muscle of streptozotocin-induced diabetic rats: effects of insulin and glucose. Endocrinology 130: 1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Goldstein BJ (1993) Regulation of insulin receptor signalling by proteintyrosine dephosphorylation. Receptor 3: 1–15

    PubMed  CAS  Google Scholar 

  • Gong CX, Grundke-Iqbal I, Iqbal K (1994a) Dephosphorylation of Alzheimer’s disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 61: 765–772

    Article  PubMed  CAS  Google Scholar 

  • Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K (1994b) Alzheimer’s disease abnormally phosphorylated tau is dephosphorylated by phosphatase-2B (calcineurin). J Neurochem 62: 803–806

    Article  PubMed  CAS  Google Scholar 

  • Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 65: 732–738

    Article  PubMed  CAS  Google Scholar 

  • Grieb P, Kryczka T, Fiedorowicz M, Frontczak-Baniewicz M, Walski M (2004) Expansion of the Golgi apparatus in rat cerebral cortex following intracerebroventricular injections of streptozotocin. Acta Neurobiol Exp (Wars) 64: 481–489

    Google Scholar 

  • Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O’Connor R, O’Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93: 105–117

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Hoyer S, Riederer P (2004) Gene expression profile in streptozotocin rat model for sporadic Alzheimer’s disease. J Neural Transm 111: 367–386

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2006) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem, doi: 10.1111/j.1471-4159.2006.04368.x

    Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356

    Article  PubMed  CAS  Google Scholar 

  • Häring HU (1991) The insulin receptor: signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologica 34: 848–461

    Article  Google Scholar 

  • Häring HU, Kirsch D, Obermeier B, Ermel B, Machicao F (1986) Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro. Biochem J 234: 59–66

    PubMed  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978a) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272: 827–829

    Article  PubMed  CAS  Google Scholar 

  • Havrankova J, Schmechel D, Roth J, Brownstein M (1978b) Identification of insulin in rat brain. Proc Natl Acad Sci USA 75: 5737–5741

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich KA, Zahniser NR, Berhanu P, Brandenburg D, Olefsky JM (1983) Structural differences between insulin receptors in the brain and peripheral target tissues. J Biol Chem 258: 8527–8530

    PubMed  CAS  Google Scholar 

  • Hellweg R (1994) Trophic factors during normal brain aging and after functional damage. J Neural Transm Suppl 44: 209–217

    PubMed  CAS  Google Scholar 

  • Hellweg R, Nitsch R, Hock C, Jaksch M, Hoyer S (1992) Nerve growth factor and choline acetyltransferase activity levels in the rat brain following experimental impairment of cerebral glucose and energy metabolism. J Neurosci Res 31: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Hong MF, Lee VMY (1997) Insulin and insulin-like growth factor-1 regulate tau phosyphorylation in cultured human neurons. J Biol Chem 272: 19547–19553

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS, Murray DL, Choy LN, Spiegelmann BM (1994) Tumor necrosis factor α inhibits signalling from the insulin receptor. Proc Natl Acad Sci US 91: 4854–4858

    Article  CAS  Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105: 415–422

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Frölich L (2006) Brain function and insulin signal transduction in sporadic Alzheimer’s disease. In: Sun MK (ed) Research progress in Alzheimer’s disease and dementia. Nova Science, New York

    Google Scholar 

  • Hoyer S, Lannert H, Noldner M, Chatterjee SS (1999) Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb 761). J Neural Transm 106: 1171–1188

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, Uchida T (1993) Glycogen synthase kinase 3-beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 325: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Takamatsu M, Tomizawa K, Omori A, Takahashi M, Arioka M, Uchida T, Imahori K (1992) Tau protein kinase I converts normal tau protein into A68-like component of paired helical filaments. J Biol Chem 267: 10897–10901

    PubMed  CAS  Google Scholar 

  • Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546: 32–36

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Kasuga M, Akanuma Y, Ezaki O, Takaku F (1984) Decreased autophosphorylation of the insulin receptor-kinase in streptozotocindiabetic rats. J Biol Chem 259: 14208–14216

    PubMed  CAS  Google Scholar 

  • Kenner KA, Hill DE, Olefsky JM, Kusari J (1993) Regulation of protein tyrosine phosphatases by insulin and insulin-like growth factor I. J Biol Chem 268: 25455–25462

    PubMed  CAS  Google Scholar 

  • Lackovic Z, Salkovic M (1990) Streptozotocin and alloxan produce alterations in rat brain monoamines independently of pancreatic beta cells destruction. Life Sci 46: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Lai WH, Cameron PH, Doherty JJ 2nd, Posner BI, Bergeron JJ (1989) Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization. J Cell Biol 109: 2751–2760

    Google Scholar 

  • Landreth G (2006) PPARγ agonists as new therapeutic agents for the treatment of Alzheimer/’s disease. Exp Neurol 199: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112: 1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Lannert H, Wirtz P, Schuhmann V, Galmbacher R (1998) Effects of Estradiol (-17beta) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin. J Neural Transm 105: 1045–1063

    Article  PubMed  CAS  Google Scholar 

  • Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferre P, Penicaud L (1994) Glucose transporter 2 (GLUT2): expression in specific brain nuclei. Brain Res 638: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9: 13–33

    PubMed  CAS  Google Scholar 

  • Li B, Xi X, Roane DS, Ryan DH, Martin RJ (2003) Distribution of glucokinase, glucose transporter GLUT2, sulfonylurea receptor-1, glucagon-like peptide-1 receptor and neuropeptide Y messenger RNAs in rat brain by quantitative real time RT-PCR. Brain Res Mol Brain Res 113: 139–142

    Article  PubMed  CAS  Google Scholar 

  • Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature 215: 1375–1376

    Article  PubMed  CAS  Google Scholar 

  • Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 532: 95–100

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Reagan LP (2004) Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 490: 13–24

    Article  PubMed  CAS  Google Scholar 

  • Moosavi M, Naghdi N, Maghsoudi N, Asl SZ (2006) The effect of intrahippocampal insulin microinjection on spatial learning and memory. Horm Behav 50: 748–752

    Article  PubMed  CAS  Google Scholar 

  • Moss AM, Unger JW, Moxley RT, Livingston JN (1990) Location of phosphotyrosine-containing proteins by immunocytochemistry in the rat forebrain corresponds to the distribution of insulin receptor. Proc Natl Acad Sci USA 87: 4453–4457

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Nitsch RM, Wurtman RJ, Hoyer S (1998) Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 105: 1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Ngarmukos C, Baur EL, Kumagai AK (2001) Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res 900: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 128: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Tripletransgenic model of Alzheimer’s disease with plaques and tangles: intracelullar Aβ and synaptic dysfunction. Neuron 39: 409–421

    Article  PubMed  CAS  Google Scholar 

  • Paolini R, Serra A, Kinet JP (1996) Persistence of tyrosine-phosphorylated FcepsilonRI in deactivated cells. J Biol Chem 271: 15987–15992

    Article  PubMed  CAS  Google Scholar 

  • Pathan AR, Viswanad B, Sonkusare SK, Ramarao P (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79: 2209–22016

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, Flynn ER (2004) Insulin resistance contributes to abberant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 17: 500–5006

    Article  PubMed  CAS  Google Scholar 

  • Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol 199: 245–248

    Article  CAS  Google Scholar 

  • Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58: 1010–1019

    PubMed  CAS  Google Scholar 

  • Pei JJ, Khatoon S, An WL, Nordlinder M, Tanaka T, Braak H, Tsujio I, Takeda M, Alafuzoff I, Winblad B, Cowburn RF, Grundke-Iqbal I

    Google Scholar 

  • Iqbal K (2003) Role of protein kinase B in Alzheimer’s neurofibrillary pathology. Acta Neuropathol (Berl) 105: 381–392

    Google Scholar 

  • Perez A, Morelli L, Cresto JC, Castano EM (2000) Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzymes from Alzheimer disease and control brains. Neurochem Res 25: 247–255

    Article  PubMed  CAS  Google Scholar 

  • Phiel CJ, Wilson CA, Lee VMY, Klein PS (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423: 435–439

    Article  PubMed  CAS  Google Scholar 

  • Plaschke K, Hoyer S (1993) Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 11: 477–483

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, Blokland A, Honig W, Meng F, Jolies J (1995) Spatial discrimination learning and choline acetyltransferase activity in streptozotocin-treated rats: effects of chronic treatment with acetyl-Lcarnitine. Brain Res 674: 142–146

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, De Vente J, Honig W, Steinbusch H, Ittersum MMV, Blokland A, Steinbusch HW (2000) Nitric oxide synthase does not mediate neurotoxicity after an i.c.v. injection of streptozotocin in the rat. J Neural Transm 107: 745–766

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, Fahrig T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res 102: 73–88

    Article  PubMed  CAS  Google Scholar 

  • Puro DG (2002) Diabetes-induced dysfunction of retinal Muller cells. Trans Am Ophthalmol Soc 100: 339–352

    PubMed  Google Scholar 

  • Qiu QW, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27: 190–198

    Article  PubMed  CAS  Google Scholar 

  • Raber J (1998) Detrimental effects of chronic hypothalamic-pituitaryadrenal axis activation. Mol Neurobiol 18: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Raizada ML, Shemer J, Judkins JH, Clarke DW, Masters BA, Le Roith D (1988) Insulin receptors in the brain: structural and physiological characterization. Neurochem Res 13: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Rajab AA, Ahren B, Bengmark S (1989) Islet transplantation to the renal subcapsular space in streptozotocin-diabetic rats: short-term effects on glucose-stimulated insulin secretion. Diabetes Res Clin Pract 7: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Reagan LP (2002) Glucose, stress and hippocampal neuronal vulnerability. Int Rev Neurobiol 51: 289–324

    PubMed  CAS  Google Scholar 

  • Rickle A, Bogdanovic N, Volkman I, Winbland B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neurochem 15: 955–959

    CAS  Google Scholar 

  • Rodrigues B, Cam MC, Kong J, Goyal RK, McNeill JH (1997) Strain differences in susceptibility to streptozotocin-induced diabetes: effects on hypertriglyceridemia and cardiomyopathy. Cardiovasc Res 34: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Salkovic M, Sabolic I, Lackovic Z (1995) Striatal dopaminergic Dl and D2 receptors after intracerebroventricular application of alloxan and streptozotocin in rat. J Neural Transm Gen Sect 100: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Lackovic Z (2003) Intracerebroventricular administration of betacytotoxics alters expression of brain monoamine transporter genes. J Neural Transm 110: 15–29

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96: 1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Santos MS, Pereira EM, Carvaho AP (1999) Stimulation of immunoreactive insulin release by glucose in rat brain synaptosomes. Neurochem Res 24: 33–36

    Article  PubMed  CAS  Google Scholar 

  • Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from betaamyloid neurodegeneration. J Biol Chem 280: 41057–41068

    Article  PubMed  CAS  Google Scholar 

  • Schechter R, Beju D, Gaffney T, Schaefer F, Whetsell L (1996) Preproinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the fetal nervous system. Brain Res 736: 16–27

    Article  PubMed  CAS  Google Scholar 

  • Schechter R, Whitmire J, Holtzelaw L, George M, Devaskar SU (1992) Developmental regulation of insulin in the mammalian central nervous system. Brain Res 582: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Gupta YK (2001a) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68: 1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Gupta YK (2001b) Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacol Biochem Behav 70: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 71: 2489–2498

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Weinstock M (2003) Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Exp Neurol 184: 1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2006) Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 52: 836–843

    Article  PubMed  CAS  Google Scholar 

  • Solano DC, Sironi M, Bonfini C, Solarte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14: 1015–1022

    PubMed  CAS  Google Scholar 

  • Sonkusare S, Srinivasan K, Kaul C, Ramarao P (2005) Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci 77: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Spencer DG, Lal H (1983) Effects of anticholinergic drugs on learning and memory. Drug Dev Res 3: 489–502

    Article  CAS  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkov EM (2002) Tau blocks traffic organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156: 1051–1063

    Article  PubMed  CAS  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease is this type 3 diabetes? J Alzheimers Dis 7: 63–80

    PubMed  CAS  Google Scholar 

  • Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13: 387–414

    Article  PubMed  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50: 336–346

    Google Scholar 

  • Terwel D, Prickaerts J, Meng F, Jolies J (1995) Brain enzyme activities after intracerebroventricular injection of streptozotocin in rats receiving acetyl-L-carnitine. Eur J Pharmacol 287: 65–71

    Article  PubMed  CAS  Google Scholar 

  • Todd S, Yoshida MC, Fang XE, McDonald L, Jacobs J, Heinrich G, Bell GI, Naylor SL, Sakaguchi AY (1985) Genes for insulin I and II, parathyroid hormone, and calcitonin are on rat chromosome 1. Biochem Biophys Res Commun 131: 1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Unger J, McNeill TH, Moxley RT 3rd, White M, Moss A, Livingston JN (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31: 143–157

    Google Scholar 

  • van der Heide LP, Ramakers GMJ, Smidt MP (2006) Insulin signaling in the central nervous system: Learning to survive. Prog Neurobiol 79: 205–221

    Article  PubMed  CAS  Google Scholar 

  • van Houten M, Posner BI, Kopriwa BM, Brawer JR (1979) Insulin-binding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radioautography. Endocrinology 105: 666–673

    Article  PubMed  Google Scholar 

  • van Houten M, Posner BI, Kopriwa BM, Brawer JR (1980) Insulin binding sites localized to nerve terminals in rat median eminence and arcuate nucleus. Science 207: 1081–1083

    Article  PubMed  Google Scholar 

  • Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA (1998) GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res 797: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Veerendra Kumar MH, Gupta YK (2003) Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 30: 336–342

    Article  PubMed  CAS  Google Scholar 

  • Wada A, Yokoo H, Yanagita T, Kobayashi H (2005) New twist on neuronal insulin receptor signaling in health, disease and therapeutics. J Pharmacol Sci 99: 128–143

    Article  PubMed  CAS  Google Scholar 

  • Wang YT, Salter MW (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369: 233–235

    Article  PubMed  CAS  Google Scholar 

  • Watson G, Cholerton B, Reger M, Baker L, Plymate S, Asthana S, Fishel M, Kulstad J, Green P, Cook D, Kahn S, Keeling M, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Ger Psychiat s13: 950–958

    Article  Google Scholar 

  • Watson GS, Craft S (2006) Insulin resistance, inflammation, and cognition in Alzheimer’s disease: lessons for multiple sclerosis. J Neurosci 245: 21–33

    CAS  Google Scholar 

  • Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MB, Shoham S (2001) Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann NY Acad Sci 939: 148–161

    Article  PubMed  CAS  Google Scholar 

  • Weinstock M, Shoham S (2004) Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. J Neural Transm 111: 347–366

    Article  PubMed  CAS  Google Scholar 

  • Wozniak M, Rydzewski B, Baker SP, Raizada MK (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochem Int 22: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Heimerhorst E, Taddel K, Plewright B, van Bronswijk W, Martins R (2002) Alzheimer’s β-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22(RC221): 1–5

    Google Scholar 

  • Yun SW, Gartner U, Arendt T, Hoyer S (2000) Increase in vulnerability of middle-aged rat brain to lead by cerebral energy depletion. Brain Res Bull 52: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. J Biol Chem 274: 34893–34902

    Article  PubMed  CAS  Google Scholar 

  • Zhao WQ, Chen H, Quon MH, Alkon DL (2004) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490: 71–81

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Salkovic-Petrisic, M., Hoyer, S. (2007). Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_28

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics