Skip to main content

Advertisement

Log in

Effects of Hypoxia and Oxidative Stress on Expression of Neprilysin in Human Neuroblastoma Cells and Rat Cortical Neurones and Astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pathogenesis of Alzheimer’s disease (AD), which is characterised by accumulation of extracellular deposits of β-amyloid peptide (Aβ) in the brain, has recently been linked to vascular disorders such as ischemia and stroke. Aβ is constantly produced in the brain from amyloid precursor protein (APP) through its cleavage by β- and γ-secretases and certain Aβ species are toxic for neurones. The brain has an endogenous mechanism of Aβ removal via proteolytic degradation and the zinc metalloproteinase neprilysin (NEP) is a critical regulator of Aβ concentration. Down-regulation of NEP could predispose to AD. By comparing the effects of hypoxia and oxidative stress on expression and activity of the Aβ-degrading enzyme NEP in human neuroblastoma NB7 cells and rat primary cortical neurones we have demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity. On contrary in astrocytes hypoxia increased NEP mRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

NEP:

Neprilysin

ECE:

Endothelin converting enzyme

IDE:

Insulin degrading enzyme

APP:

Amyloid precursor protein

GLUT1:

Glucose transporter 1

PS1:

Presenilin 1

References

  1. Atkinson L, Boyle JP, Pearson HA et al (2006) Chronic hypoxia inhibits Na+/Ca2+ exchanger expression in cortical astrocytes. Neuroreport 17:649–652

    Article  PubMed  CAS  Google Scholar 

  2. Di Legge S, Hachinski V (2003) Prospects for prevention and treatment of vascular cognitive impairment. Curr Opin Invest Drugs 4:1082–1087

    Google Scholar 

  3. Kalaria RN (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging 21:321–330

    Article  PubMed  CAS  Google Scholar 

  4. Camarata PJ, Heros RC, Latchaw RE (1994) “Brain attack”: the rationale for treating stroke as a medical emergency. Neurosurgery 34:144–157

    Article  PubMed  CAS  Google Scholar 

  5. Dolinak D, Smith C, Graham DI (2000) Global hypoxia per se is an unusual cause of axonal injury. Acta Neuropathol (Berl) 100:553–560

    Article  CAS  Google Scholar 

  6. Baiden-Amissah K, Joashi U, Blumberg R et al (1998) Expression of amyloid precursor protein (β-APP) in the neonatal brain following hypoxic ischaemic injury. Neuropathol Appl Neurobiol 24:346–352

    Article  PubMed  CAS  Google Scholar 

  7. Webster NJ, Green KN, Peers C et al (2002) Altered processing of amyloid precursor protein in the human neuroblastoma SH-SY5Y by chronic hypoxia. J Neurochem 83:1262–1271

    Article  PubMed  CAS  Google Scholar 

  8. Webster NJ, Green KN, Settle VJ et al (2004) Altered processing of the amyloid precursor protein and decreased expression of ADAM 10 by chronic hypoxia in SH-SY5Y: no role for the stress-activated JNK and p38 signalling pathways. Brain Res Mol Brain Res 130:161–169

    Article  PubMed  CAS  Google Scholar 

  9. Pluta R (2002) Astroglial expression of the β-amyloid in ischemia-reperfusion brain injury. Ann N Y Acad Sci 977:102–108

    Article  PubMed  CAS  Google Scholar 

  10. Nalivaeva NN, Fisk L, Canet Aviles RM et al (2003) Effect of prenatal hypoxia on expression of amyloid precursor protein and metallopeptidases in the rat brain. Lett Peptide Sci 10:455–462

    Article  CAS  Google Scholar 

  11. Nalivaeva NN, Fisk L, Kochkina EG et al (2004) Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann N Y Acad Sci 1035:21–33

    Article  CAS  Google Scholar 

  12. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–568

    PubMed  CAS  Google Scholar 

  13. Gille JJ, Joenje H (1992) Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutat Res 275:405–414

    PubMed  CAS  Google Scholar 

  14. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  15. Mumford RA, Strauss AW, Powers JC et al (1980) A zinc metalloendopeptidase associated with dog pancreatic membranes. J Biol Chem 255:2227–2230

    PubMed  CAS  Google Scholar 

  16. Jogi A, Ora I, Nilsson H et al (2003) Hypoxia-induced dedifferentiation in neuroblastoma cells. Cancer Lett 197:145–150

    Article  PubMed  CAS  Google Scholar 

  17. Jogi A, Ora I, Nilsson H et al (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 99:7021–7026

    Article  PubMed  CAS  Google Scholar 

  18. Zhang JZ, Behrooz A, Ismail-Beigi F (1999) Regulation of glucose transport by hypoxia. Am J Kidney Dis 34:189–202

    PubMed  CAS  Google Scholar 

  19. Avramovich-Tirosh Y, Amit T, Bar-Am O et al (2007) Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer’s disease. J Neurochem 100:490–502 [Epub ahead of print Nov 27, 2006]

    Article  PubMed  CAS  Google Scholar 

  20. Weinreb O, Amit T, Bar-Am O et al (2006) Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagilinr and its propargyl moiety. J Neuroal Transm Suppl 70:457–465

    CAS  Google Scholar 

  21. Cedazo-Minguez A, Bonecchi L, Winblad B et al (1999) Nicergoline stimulates protein kinase C mediated α-secretase processing of the amyloid precursor protein in cultured human neuroblastoma SH-SY5Y cells. Neurochem Int 35:307–315

    Article  PubMed  CAS  Google Scholar 

  22. Fisk L, Nalivaeva NN, Turner AJ (2006) Regulation of endothelin-converting enzyme-1 expression in human neuroblastoma cells. Exp Biol Med (Maywood) 231:1048–1053

    CAS  Google Scholar 

  23. Nalivaeva NN, Fisk L, Kochkina EG et al (2006) Different mechanisms of secretion of amyloid-degrading enzymes neprilysin and insulinase by human neuroblastoma cells in culture. J Neurochem 98(Suppl):19

    Google Scholar 

  24. Seeger RC, Siegel SE, Sidell N (1982) Neuroblastoma: clinical perspectives, monoclonal antibodies, and retinoic acid. Ann Intern Med 97:873–884

    PubMed  CAS  Google Scholar 

  25. Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71:741–747

    PubMed  CAS  Google Scholar 

  26. Shapiro DN, Valentine MB, Rowe ST et al (1993) Detection of N-myc gene amplification by fluorescence in situ hybridization. Diagnostic utility for neuroblastoma. Am J Pathol 142:1339–1346

    PubMed  CAS  Google Scholar 

  27. Rosner H, Vacun G, Rebhan M. (1995) Muscarinic receptor-mediated induction of actin-driven lamellar protrusions in neuroblastoma cell somata and growth cones. Involvement of protein kinase C. Eur J Cell Biol 66:324–334

    PubMed  CAS  Google Scholar 

  28. Carson JA, Turner AJ (2002) β-amyloid catabolism: role for neprilysin (NEP) and other metallopeptidases? J Neurochem 81:1–8

    Article  PubMed  CAS  Google Scholar 

  29. Caccamo A, Oddo S, Sugarman MC et al (2005) Age- and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 26:645–654

    Article  PubMed  CAS  Google Scholar 

  30. Nalivaeva NN, Fisk L, Kochkina EG et al (2006) Developmental dynamics of amyloid-degrading enzymes in the rat brain under normal and hypoxic conditions. Abstracts of FENS meeting. Vienna, Austria 3:335–336

    Google Scholar 

  31. Breteler MM (2000) Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging 21:153–160

    Article  PubMed  CAS  Google Scholar 

  32. Boado RJ, Pardridge WM (2002) Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. J Neurochem 80:552–554

    Article  PubMed  CAS  Google Scholar 

  33. Vannucci SJ, Seaman LB, Vannucci RC (1996) Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J Cereb Blood Flow Metab 16:77–81

    Article  PubMed  CAS  Google Scholar 

  34. Hoyer A, Bardenheuer HJ, Martin E et al (2005) Amyloid precursor protein (APP) and its derivatives change after cellular energy depletion. An in vitro-study. J Neural Transm 112:239–253

    Article  PubMed  CAS  Google Scholar 

  35. Smith IF, Boyle JP, Vaughan PF et al (2001) Effects of chronic hypoxia on Ca2+ stores and capacitative Ca2+ entry in human neuroblastoma (SH-SY5Y) cells. J Neurochem 79:877–884

    Article  PubMed  CAS  Google Scholar 

  36. Holmquist L, Jogi A, Pahlman S (2005) Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. Int J Cancer 116:218–225

    Article  PubMed  CAS  Google Scholar 

  37. Kumar GK, Runold M, Ghai RD et al (1990) Occurrence of neutral endopeptidase activity in the cat carotid body and its significance in chemoreception. Brain Res 517:341–343

    Article  PubMed  CAS  Google Scholar 

  38. Kumar GK, Kou YR, Overholt JL et al (2000) Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia. J Appl Physiol 88:195–202

    PubMed  CAS  Google Scholar 

  39. Carpenter TC, Stenmark KR (2001) Hypoxia decreases lung neprilysin expression and increases pulmonary vascular leak. Am J Physiol Lung Cell Mol Physiol 281:L941–L948

    PubMed  CAS  Google Scholar 

  40. Hara H, Oh-hashi K, Yoneda S et al (2006) Elevated neprilysin activity in vitreous of patients with proliferative diabetic retinopathy. Mol Vis 12:977–982

    PubMed  CAS  Google Scholar 

  41. Oh-hashi K, Nagai T, Tanaka T et al (2005) Determination of hypoxic effect on neprilysin activity in human neuroblastoma SH-SY5Y cells using a novel HPLC method. Biochem Biophys Res Commun 334:380–385

    Article  PubMed  CAS  Google Scholar 

  42. Reznichenko L, Amit T, Zheng H et al (2006) Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J Neurochem 97:527–536

    Article  PubMed  CAS  Google Scholar 

  43. Melzig MF, Janka M (2003) Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine 10:494–498

    Article  PubMed  CAS  Google Scholar 

  44. Ayoub S, Melzig MF (2006) Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J Pharm Pharmacol 58:495–501

    Article  PubMed  CAS  Google Scholar 

  45. Golde TE (2006) Disease modifying therapy for AD?. J Neurochem 99:689–707

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Medical Research Council, UK and The Biochemical Society (Mrs L Fisk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Nalivaeva.

Additional information

Special issue dedicated to Dr. Moussa Youdim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisk, L., Nalivaeva, N.N., Boyle, J.P. et al. Effects of Hypoxia and Oxidative Stress on Expression of Neprilysin in Human Neuroblastoma Cells and Rat Cortical Neurones and Astrocytes. Neurochem Res 32, 1741–1748 (2007). https://doi.org/10.1007/s11064-007-9349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9349-2

Keywords

Navigation