Skip to main content

Advertisement

Log in

Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer’s Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurological disease that gradually causes memory loss and cognitive impairment. The intracellular secondary messenger cyclic nucleotide cAMP helps in memory acquisition and consolidation. In several models of AD, increasing their levels using phosphodiesterase (PDE) inhibitors improved cognitive performance and prevent memory loss. Thus, the current investigation was undertaken to investigate the therapeutic potential of the PDE-4 inhibitor roflumilast (RFM) against intracerebroventricular (ICV) streptozotocin (STZ)-induced sporadic AD in rats. STZ (3 mg/kg) was given to rats via the ICV route on the stereotaxic apparatus, followed by RFM (0.51 mg/kg/oral) treatment for 15 days, and donepezil (5 mg/kg/oral) was employed as a reference standard drug. Subsequently, we observed that RFM dramatically increased rats learning and memory capacities as measured by the Morris water maze and a novel object recognition task. RFM enhanced the levels of cAMP and brain-derived neurotrophic factors (BDNFs) while decreasing the expression of nuclear factor kappa B (NF-κB) and glial fibrillary acidic protein (GFAP) in the hippocampus of ICV-STZ-infused rats. RFM was found to significantly reduce ICV-STZ-induced neuroinflammation, amyloidogenesis, oxidative stress cholinergic impairments, GSK-3β, and phosphorylated tau levels in the rat hippocampus. Supporting these, histopathological study using Cresyl violet and Congo red demonstrated that RFM reduced neuronal alterations and Aβ deposition in the hippocampus of AD rats. These findings suggest that RFM could be a promising candidate for the management of AD by inhibiting NF-κB/BACE-1 mediated Aβ production in the hippocampus and activating the cAMP/BDNF signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abeysinghe A, Deshapriya R, Udawatte C (2020) Alzheimer’s disease: a review of the pathophysiological basis and therapeutic interventions. Life Sci 11:7996

    Google Scholar 

  • Agrawal M, Perumal Y, Bansal S (2020) Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-kinase dependent pathway. Food Chem Toxicol 145:111684

  • Ahmed ME, Javed H, Khan MM (2013) Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 250:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Akhtar A, Bishnoi M, Sah SP (2020a) Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotocin rat model of Alzheimer’s disease through modulation of brain insulin resistance induced tau pathology. Brain Res Bull 164:83–97

    Article  CAS  PubMed  Google Scholar 

  • Akhtar A, Dhaliwal J, Saroj P (2020b) Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology 28:385–400

    Article  CAS  PubMed  Google Scholar 

  • Amenta F, Di Tullio MA, Tomassoni D (2002) The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies. Clin Exp Hypertens 24:697–713

    Article  CAS  PubMed  Google Scholar 

  • Anand KS, Dhikav V (2012) Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 15:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Argyrousi EK, Heckman PR, Prickaerts J (2020) Role of cyclic nucleotides and their downstream signaling cascades in memory function: being at the right time at the right spot. Neurosci Biobehav Rev 113:12–38

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Deshmukh R (2017) Embelin attenuates intracerebroventricular streptozotocin-induced behavioral, biochemical, and neurochemical abnormalities in rats. Mol Neurobiol 54:6670–6680

    Article  CAS  PubMed  Google Scholar 

  • Ashafaq M, Varshney L, Khan MHA (2014) Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. Biomed Res Int 2014:249031

  • Avila J, León-Espinosa G, García E (2012) Tau phosphorylation by GSK3 in different conditions. Int J Alzheimers Dis 2012:578373

  • Barai P, Raval N, Acharya S (2019) Neuroprotective effects of bergenin in Alzheimer’s disease: investigation through molecular docking, in vitro and in vivo studies. Behav Brain Res 356:18–40

    Article  CAS  PubMed  Google Scholar 

  • Bloch K, Gil-Ad I, Vanichkin A (2017) Intracerebroventricular streptozotocin induces obesity and dementia in Lewis rats. J Alzheimers Dis 60:121–136

    Article  CAS  PubMed  Google Scholar 

  • Cilli A, Bal H, Gunen H (2019) Efficacy and safety profile of roflumilast in a real-world experience. J Thorac Dis 11:1100–1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole SL, Vassar R (2007) The basic biology of BACE1: a key therapeutic target for Alzheimer’s disease. Curr Genomics 8:509–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia SC, Santos RX, Santos MS (2013) Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr Alzheimer Res 10:406–419

    Article  CAS  PubMed  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, JrV A (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Erdoğan ME, Aydın S, Yanar K (2017) The effects of lipoic acid on redox status in brain regions and systemic circulation in streptozotocin-induced sporadic Alzheimer’s disease model. Metab Brain Dis 32:1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Guo HB, Cheng YF, Wu JG (2015) Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation. Neuroscience 290:530–542

    Article  CAS  PubMed  Google Scholar 

  • Haider S, Saleem S, Perveen T (2014) Age-related learning and memory deficits in rats: role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age 36:1291–1302

    Article  CAS  Google Scholar 

  • Hampel H, Vassar R, De Strooper B (2021) The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiat 89:745–756

    Article  CAS  PubMed  Google Scholar 

  • Heckman P, Blokland A, Bollen E (2018) Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: clinical overview and translational considerations. Neurosci Biobehav Rev 87:233–254

    Article  CAS  PubMed  Google Scholar 

  • Hernández F, de Barreda EG, Fuster-Matanzo A (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223:322–325

    Article  PubMed  CAS  Google Scholar 

  • Hillen H (2019) The beta amyloid dysfunction (BAD) hypothesis for Alzheimer’s disease. Front Neurosci 13:1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Javed H, Khan M, Ahmad A (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352

    Article  CAS  PubMed  Google Scholar 

  • Javed H, Vaibhav K, Ahmed ME (2015) Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J Neurol Sci 348:51–59

    Article  CAS  PubMed  Google Scholar 

  • Jha NK, Jha SK, Kar R (2019) Nuclear factor-kappa β as a therapeutic target for Alzheimer’s disease. J Neurochem 150:113–137

    Article  CAS  PubMed  Google Scholar 

  • Jollow D, Mitchell J, Zampaglione N (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  PubMed  Google Scholar 

  • Kamat PK (2015) Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res 10:1050–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaundal M, Akhtar M, Deshmukh R (2017) Lupeol isolated from Betula alnoides ameliorates amyloid beta induced neuronal damage via targeting various pathological events and alteration in neurotransmitter levels in rat’s brain. J Neurol Neurosci 8:195

    Article  Google Scholar 

  • Kaundal M, Deshmukh R, Akhtar M (2018a) Protective effect of betulinic acid against intracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats: possible neurotransmitters and neuroinflammatory mechanism. Pharmacol Rep 70:540–548

    Article  CAS  PubMed  Google Scholar 

  • Kaundal M, Zameer S, Najmi AK (2018b) Betulinic acid, a natural PDE inhibitor restores hippocampal cAMP/cGMP and BDNF, improve cerebral blood flow and recover memory deficits in permanent BCCAO induced vascular dementia in rats. Eur J Pharmacol 832:56–66

    Article  CAS  PubMed  Google Scholar 

  • Khan K, Najmi AK, Akhtar M (2019) A natural phenolic compound quercetin showed the usefulness by targeting inflammatory, oxidative stress markers and augment 5-HT levels in one of the animal models of depression in mice. Drug Res (stuttg) 69:392–400

    Article  CAS  Google Scholar 

  • Khan MB, Ahmad M, Ahmad S (2015) Bacopa monniera ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences. Metab Brain Dis 30:115–127

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh N (2017) Inhibitor of phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer’s type. Biomed Pharmacother 88:698–707

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zuo J, Tang W (2018) Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol 9:1048–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Kuang S, Li H (2017) cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget 8:35558–35572

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda M, Morici JF, Zanoni MB (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra SK, Singh S, Shukla S (2018) Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats. Neurochem Int 113:56–68

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Murman DL (2015) The impact of age on cognition. Semin Hear 36:111–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordberg A, Ballard C, Bullock R (2013) A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 15:PCC.12r01412

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard, cover. Elsevier

    Google Scholar 

  • Perez-Gonzalez R, Pascual C, Antequera D (2013) Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol Aging 34:2133–2145

    Article  CAS  PubMed  Google Scholar 

  • Perez-Nievas BG, Serrano-Pozo A (2018) Deciphering the astrocyte reaction in Alzheimer’s disease. Front Aging Neurosci 10:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raheja S, Girdhar A, Kamboj A (2019) Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin in male rats. Life Sci 221:196–203

    Article  CAS  PubMed  Google Scholar 

  • Rahman SO, Kaundal M, Salman M (2020) Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer’s disease. Eur J Pharmacol 889:173522

  • Rahman SO, Panda BP, Parvez S (2019) Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 110:47–58

    Article  CAS  PubMed  Google Scholar 

  • Reeta K, Singh D, Gupta Y (2017a) Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation. Neurochem Int 108:146–156

    Article  CAS  PubMed  Google Scholar 

  • Reeta K, Singh D, Gupta YK (2017b) Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats. Eur J Neurosci 45:987–997

    Article  CAS  PubMed  Google Scholar 

  • Richa R, Yadawa AK, Chaturvedi CM (2017) Hyperglycemia and high nitric oxide level induced oxidative stress in the brain and molecular alteration in the neurons and glial cells of laboratory mouse, Mus musculus. Neurochem Int 104:64–79

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic M, Knezovic A, Hoyer S (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm 120:233–252

    Article  CAS  PubMed  Google Scholar 

  • Salman M, Kaushik P, Tabassum H (2020) Melatonin provides neuroprotection following traumatic brain injury-promoted mitochondrial perturbation in Wistar rat. Cell Mol Neurobiol 41:765–781

    Article  PubMed  CAS  Google Scholar 

  • Sanders O, Rajagopal L (2020) Phosphodiesterase inhibitors for Alzheimer’s disease: a systematic review of clinical trials and epidemiology with a mechanistic rationale. J Alzheimers Dis Rep 4:185–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaler AW, Myeku N (2018) Cilostazol, a phosphodiesterase 3 inhibitor, activates proteasome-mediated proteolysis and attenuates tauopathy and cognitive decline. Transl Res 193:31–41

    Article  CAS  PubMed  Google Scholar 

  • Shalaby MA, Nounou HA, Deif MM (2019) The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimer’s disease. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 55:48

    Article  Google Scholar 

  • Sharma VK, Singh TG, Singh S (2020) Cyclic nucleotides signaling and phosphodiesterase inhibition: defying Alzheimer’s disease. Curr Drug Targets 21:1371–1384

    CAS  PubMed  Google Scholar 

  • Smith JA, Das A, Ray SK (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    Article  CAS  PubMed  Google Scholar 

  • Soria Lopez JA, González HM, Léger GC (2019) Alzheimer’s disease. Handb Clin Neurol 167:231–255

    Article  PubMed  Google Scholar 

  • Tiwari V, Mishra A, Singh S (2021) Protriptyline improves spatial memory and reduces oxidative damage by regulating NFκB-BDNF/CREB signaling axis in streptozotocin-induced rat model of Alzheimer’s disease. Brain Res 1754:147261

  • Utley HG, Bernheim F, Hochstein P (1967) Effect of sulfhydryl reagents on peroxidation in microsomes. Arch Biochem Biophys 118:29–32

    Article  CAS  Google Scholar 

  • Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430

    Article  PubMed  Google Scholar 

  • Van Duinen MV, Sambeth PRA, Hackman S (2018) Acute administration of roflumilast enhances immediate recall of verbal word memory in healthy young adults. Neuropharmacology 131:31–38

    Article  PubMed  CAS  Google Scholar 

  • Vanmierlo T, Creemers P, Akkerman S (2016) The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses. Behav Brain Res 303:26–33

    Article  CAS  PubMed  Google Scholar 

  • Verri M, Pastoris O, Dossena M (2012) Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer’s disease. Int J Immunopathol Pharmacol 25:345–353

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang FF, Xu Y (2020) The phosphodiesterase-4 inhibitor roflumilast, a potential treatment for the comorbidity of memory loss and depression in Alzheimer’s disease: a preclinical study in APP/PS1 transgenic mice. Int J Neuropsychopharmacol 23:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Xiaokaiti Y, Wang G (2017) Inhibition of PDE2 reverses beta amyloid induced memory impairment through regulation of PKA/PKG-dependent neuro-inflammatory and apoptotic pathways. Sci Rep 7:1–12

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W, Shen M, Sun K (2018) Aminoguanidine reverses cognitive deficits and activation of cAMP/CREB/BDNF pathway in mouse hippocampus after traumatic brain injury (TBI). Brain Inj 32:1858–1865

    Article  PubMed  Google Scholar 

  • Yan K, Gao L-N, Cui Y-L (2016) The cyclic AMP signaling pathway: exploring targets for successful drug discovery (review). Mol Med Rep 13:3715–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zameer S, Alam M, Hussain S (2020) Neuroprotective role of alendronate against APP processing and neuroinflammation in mice fed a high fat diet. Brain Res Bull 161:197–212

    Article  CAS  PubMed  Google Scholar 

  • Zameer S, Vohora D (2017) Effect of aromatase inhibitors on learning and memory and modulation of hippocampal dickkopf-1 and sclerostin in female mice. Pharmacol Rep 69:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liu X, Xia W (2020) Targeting amyloidogenic processing of APP in Alzheimer’s disease. Front Mol Neurosci 13:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo Y, Guo H, Cheng Y (2016) Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by Aβ25–35 in rats. Metab Brain Dis 31:779–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Department of Science and Technology Government of India, and the Hamdard National Fellowship (HNF), Jamia Hamdard New Delhi, India. We would like to thank the Neurotoxicology Lab, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, India, for providing the essential facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Akhtar.

Ethics declarations

Ethics Approval

All of the tests were carried out in accordance with the rules established by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA). The experimental procedure was approved by Jamia Hamdard Institutional Animal Ethics Committee (IAEC) under protocol number 1815.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, N., Zameer, S., Najmi, A.K. et al. Roflumilast Reduces Pathological Symptoms of Sporadic Alzheimer’s Disease in Rats Produced by Intracerebroventricular Streptozotocin by Inhibiting NF-κB/BACE-1 Mediated Aβ Production in the Hippocampus and Activating the cAMP/BDNF Signalling Pathway. Neurotox Res 40, 432–448 (2022). https://doi.org/10.1007/s12640-022-00482-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00482-x

Keywords

Navigation