Skip to main content

Advertisement

Log in

Understanding chemical allergen potency: role of NLRP12 and Blimp-1 in the induction of IL-18 in human keratinocytes

  • Immunotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Keratinocytes (KCs) play a key role in all phases of skin sensitization. We recently identified interleukin-18 (IL-18) production as useful end point for determination of contact sensitization potential of low molecular weight chemicals. The aim of this study was to identify genes involved in skin sensitizer-induced inflammasome activation and to establish their role in IL-18 production. For gene expression analysis, cells were treated for 6 h with p-phenylenediamine (PPD) as reference contact allergen; total RNA was extracted and examined with a commercially available Inflammasome Polymerase Chain Reaction (PCR) array. Among genes induced, NLRP12 (Nod-like receptor P12) was selected for further investigation. NLRP12 promoter region contains Blimp-1 (B-lymphocyte-induced maturation protein-1)/PRDM1 binding site, and from the literature, it is reported that Blimp-1 reduces NLRP12 activity and expression in monocytes/macrophages. Their expression and role in KCs are currently unknown. To confirm NLRP12 expression and to investigate its relationship with Blimp-1, cells were exposed for different times (3, 6 and 24 h) to the extreme sensitizer 2,4-dinitrochlorobenzene (DNCB) and the strong sensitizer PPD. Allergens were able to induce both genes, however, with different kinetic, with DNCB more rapidly upregulating Blimp-1 and inducing IL-18 production, compared to PPD. NLRP12 and Blimp-1 expression appeared to be inversely correlated: Blimp-1 silencing resulted in increased NLRP12 expression and reduced contact allergen-induced IL-18 production. Overall results indicate that contact allergens of different potency differently modulate Blimp-1/NLRP12 expression, with strong allergen more rapidly downregulating NLRP12, thus more rapidly inducing IL-18 production. Data confirm that also in KCs, NLRP12 has an inhibitory effect on inflammasome activation assessed by IL-18 maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACD:

Allergic contact dermatitis

AOO:

Acetone olive oil

ASC:

Apoptosis-associated speck-like protein

Blimp-1:

B-lymphocyte-induced maturation protein-1

CARD:

Caspase activation and recruitment domain

DAMPs:

Damage-associated molecular patterns

DiSFeB:

Dipartimento di Scienze Farmacologiche e Biomolecolari

DMSO:

Dimethyl sulfoxide

DNCB:

2,4-Dinitrochlorobenzene

ELISA:

Enzyme-linked Immunosorbent assay

IFN-γ:

Interferon-γ

IL-18:

Interleukin-18

IL-1β:

Interleukin-1β

KC:

Keratinocytes

LLNA:

Local lymph node assay

LLR:

Leucine-rich repeat protein

NF-κB:

Nuclear factor-κB

NLR:

NOD-like receptor

NLRP12:

Nod-like receptor P12

PAMPs:

Pathogen-associated molecular patterns

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PPD:

p-Phenylenediamine

PVDF:

Polyvinylidene difluoride

PYD:

Pyrin domain

REACH:

Registration evaluation authorization and restriction of chemicals

RHE:

Reconstituted human epidermis

SDS:

Sodium dodecyl sulfate

siRNA:

Small interference RNA

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

References

  • Antonopoulus C, Cumberbatch M, Mee JB et al (2008) IL-18 is a key proximal mediator of contact hypersensitivity and allergen-induced Langherans cell migration in murine epidermis. J Leukoc Biol 83:361–367

    Article  Google Scholar 

  • Arthur JC, Lich JD, Ye Z et al (2010) Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol 185:4515–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basketter D, Darlenski R, Fluhr JW (2008) Skin irritation and sensitization mechanisms and new approaches for risk assessment. Skin Pharmacol Physiol 21:191–202

    Article  CAS  PubMed  Google Scholar 

  • Cavani A, DePita O, Girolomoni G (2007) New aspects of the molecular basis of contact allergy. Curr Opin Allergy Clin Immunol 7:404–408

    Article  CAS  PubMed  Google Scholar 

  • Chang DH, Angelin-Duclos C, Calame K (2000) BLIMP-1: trigger for differentiation of myeloid lineage. Nat Immunol 1:169–176

    Article  CAS  PubMed  Google Scholar 

  • Corsini E, Mitjans M, Galbiati V et al (2009) Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens. Toxicol In Vitro 23:789–796

    Article  CAS  PubMed  Google Scholar 

  • Corsini E, Galbiati V, Mitjans M et al (2013) NCTC 2544 and IL-18 production: a tool for the identification of contact allergens. Toxicol In Vitro 27:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Cumberbatch M, Dearman RJ, Antonopoulus C et al (2001) Interleukin (IL)-18 induces Langerhans cell migration by a tumor necrosis factor-alpha- and IL-1beta-dependent mechanism. Immunology 102:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbiati V, Corsini E (2012) The NCTC 2544 IL-18 assay for the in vitro identification of contact allergens. Curr Protoc Toxicol Chapter 20:Unit 20-8. doi:10.1002/0471140856.tx2008s54

  • Galbiati V, Papale A, Galli CL et al (2014) Role of ROS and HMGB1 in contact allergen-induced IL-18 production in human keratinocytes. J Invest Dermatol 134(11):2719–2727

    Article  CAS  PubMed  Google Scholar 

  • Gibbs S, Corsini E, Spiekstra SW, Galbiati V, Fuchs HW, Degeorge G, Troese M, Hayden P, Deng W, Roggen E (2013) An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol Appl Pharmacol 272(2):529–541

    Article  CAS  PubMed  Google Scholar 

  • Grindon C (2007) The new EU REACH regulation has finally been adopted: Is this the end of the campaign trail… or just the beginning? Altern Lab Anim 35:239–242

    CAS  PubMed  Google Scholar 

  • Grindon C, Combes R, Cronin MT et al (2008) An integrated decision-tree testing strategy for skin sensitisation with respect to the requirements of the EU REACH legislation. Altern Lab Anim 36(Suppl1):75–89

    CAS  PubMed  Google Scholar 

  • Jéru I, Duquesnoy P, Fernandes-Alnemri T et al (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci USA 105(5):1614–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan DH, Igyártó BZ, Gaspari AA (2012) Early events in the induction of allergic contact dermatitis. Nat Rev Immunol 12(2):114–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan RN, Hay DP (2015) A clear and present danger: inflammasomes DAMPing down disorders of pregnancy. Hum Reprod Update 21(3):388–405

    Article  PubMed  Google Scholar 

  • Kimber I, Basketter DA, Gerberick GF et al (2011) Chemical allergy: translating biology into hazard characterization. Toxicol Sci 1:S238–S268

    Article  Google Scholar 

  • Lich JD, Williams KL, Moore CB et al (2007) Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol 178:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lord CA, Savitsky D, Sitcheran R (2009) Blimp-1/PRDM1 mediates transcriptional suppression of the NLR gene, NLRP12/Monarch-1. J Immunol 182:2948–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  CAS  PubMed  Google Scholar 

  • Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117(5):561–574

    Article  CAS  PubMed  Google Scholar 

  • Martins GA, Cimmino L, Shapiro-Shelef M et al (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7:457–465

    Article  CAS  PubMed  Google Scholar 

  • Naik SM, Cannon G, Burbach GJ et al (1999) Human keratinocytes constitutively express interleukin-18 and secrete biologically active interleukin-18 after treatment with pro-inflammatory mediators and dinitrochlorobenzene. J Invest Dermatol 113:766–772

    Article  CAS  PubMed  Google Scholar 

  • Nosbaum A, Vocanson M, Rozieres A et al (2005) Allergic and irritant contact dermatitis. Eur J Dermatol 19:325–332

    Google Scholar 

  • Okamura H, Tsutsi H, Komatsu T et al (1995) Cloning of a new cytokine that induce IFN-γ production by T cells. Nature 378:88–91

    Article  CAS  PubMed  Google Scholar 

  • Peiser M, Tralau T, Heidler J et al (2012) Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci 69:763–781

    Article  CAS  PubMed  Google Scholar 

  • Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals—a report by the transatlantic think tank for toxicology (t4). ALTEX 26:187–208

    Article  PubMed  Google Scholar 

  • Shami PJ, Kanai N, Wang LY et al (2001) Identification and characterization of a novel gene that is upregulated in leukaemia cells by nitric oxide. Br J Haematol 112:138–147

    Article  CAS  PubMed  Google Scholar 

  • Struwe WB, Warren CE (2010) High-throughput RNAi screening for N-glycosylation dependent loci in Caenorhabditis elegans. Methods Enzymol 480:477–493

    Article  CAS  PubMed  Google Scholar 

  • Thyssen JP, Linneberg A, Mennè T et al (2007) The epidemiology of contact allergy in the general population–prevalence and main findings. Contact Dermatitis 57(5):287–299

    Article  PubMed  Google Scholar 

  • Tuncer S, Fiorillo MT, Sorrentino R (2014) The multifaceted nature of NLRP12. J Leukoc Biol 96(6):991–1000

    Article  PubMed  Google Scholar 

  • Wang L, Manji GA, Grenier JM et al (2002) PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 277(33):29874–29880

    Article  CAS  PubMed  Google Scholar 

  • Williams KL, Lich JD, Duncan JA et al (2005) The CATERPILLER protein Monarch-1 is an antagonist of Toll-like receptor-, tumor necrosis factor α-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem 280:39914–39924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MF, Chen ST, Hsieh SL (2013) Distinct regulation of dengue virus-induced inflammasome activation in humanmacrophage subsets. J Biomed Sci 20:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Lich JD, Moore CB et al (2008) ATP binding by Monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 28:1841–1850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Alternatives Research & Development Foundation, 2014—Alternatives Research Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Papale.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papale, A., Kummer, E., Galbiati, V. et al. Understanding chemical allergen potency: role of NLRP12 and Blimp-1 in the induction of IL-18 in human keratinocytes. Arch Toxicol 91, 1783–1794 (2017). https://doi.org/10.1007/s00204-016-1806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1806-8

Keywords

Navigation