Skip to main content
Log in

New insights into the organ-specific adverse effects of fumonisin B1: comparison between lung and liver

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Fumonisin B1 (FB1) is a well-known inhibitor of de novo sphingolipid biosynthesis, due to its ability to inhibit ceramide synthases (CerS) activity. In mammals, this toxin triggers broad clinical symptoms with multi-organ dysfunction such as hepatotoxicity or pulmonary edema. The molecular mechanism of CerS inhibition by FB1 remains unknown. Due to the existence of six mammalian CerS isoforms with a tissue-specific expression pattern, we postulated that the organ-specific adverse effects of FB1 might be due to different CerS isoforms. The sphingolipid contents of lung and liver were compared in normal and FB1-exposed piglets (gavage with 1.5 mg FB1/kg body weight daily for 9 days). The effect of the toxin on each CerS was deduced from the analysis of its effects on individual ceramide (Cer) and sphingomyelin (SM) species. As expected, the total Cer content decreased by half in the lungs of FB1-exposed piglets, while in contrast, total Cer increased 3.5-fold in the livers of FB1-exposed animals. Our data also indicated that FB1 is more prone to bind to CerS4 and CerS2 to deplete lung and to enrich liver in d18:1/C20:0 and d18:1/C22:0 ceramides. It also interact with CerS1 to enrich liver in d18:1/C18:0 ceramides. Cer levels were counterbalanced by those of SM. In conclusion, these results demonstrate that the specificity of the effects of FB1 on tissues and organs is due to the effects of the toxin on CerS4, CerS2, and CerS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailly JD, Querin A, Tardieu D, Guerre P (2005) Production and purification of fumonisins from a highly toxigenic Fusarium verticilloides strain. Rev Med Vet-Toulouse 156(11):547–554

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Bolger M, Coker RD, DiNovi M, Gaylor D, Gelderblom W, Olsen M, Paster N, Riley RT, Shephard G, Speijers GJA (2001) Fumonisins. In: Safety Evaluation of Certain Mycotoxins in Food, WHO Food Additives Series 47, FAO Food and Nutrition Paper 74, Prepared by the 56th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva

  • Bonzon-Kulichenko E, Schwudke D, Gallardo N, Molto E, Fernandez-Agullo T, Shevchenko A, Andres A (2009) Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology 150(1):169–178

    Article  CAS  PubMed  Google Scholar 

  • Bouhet S, Oswald IP (2007) The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res 51(8):925–931

    Article  CAS  PubMed  Google Scholar 

  • Bouhet S, Hourcade E, Loiseau N, Fikry A, Martinez S, Roselli M, Galtier P, Mengheri E, Oswald IP (2004) The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol Sci 77(1):165–171

    Article  CAS  PubMed  Google Scholar 

  • Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006). vol 2006/577/EC. Official Journal of the European Union

  • Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products (2007). vol 1126/2007. Official Journal of the European Union

  • Dutton MF (1996) Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacol Ther 70(2):137–161

    Article  CAS  PubMed  Google Scholar 

  • Evaluation of certain mycotoxins in food. Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives (2002). World Health Organ Tech Rep Ser 906:i–viii, 1–62

  • Fazekas B, Bajmocy E, Glavits R, Fenyvesi A, Tanyi J (1998) Fumonisin B1 contamination of maize and experimental acute fumonisin toxicosis in pigs. Zentralbl Veterinarmed B 45(3):171–181

    CAS  PubMed  Google Scholar 

  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP (1988) Fumonisins -novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54(7):1806–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier B, Loureiro-Bracarense AP, Lucioli J, Pacheco GD, Cossalter AM, Moll WD, Schatzmayr G, Oswald IP (2011) Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol Nutr Food Res 55(5):761–771

    Article  CAS  PubMed  Google Scholar 

  • Grenier B, Bracarense AP, Schwartz HE, Trumel C, Cossalter AM, Schatzmayr G, Kolf-Clauw M, Moll WD, Oswald IP (2012) The low intestinal and hepatic toxicity of hydrolyzed fumonisin B(1) correlates with its inability to alter the metabolism of sphingolipids. Biochem Pharmacol 83(10):1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Guillou H, Zadravec D, Martin PG, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49(2):186–199

    Article  CAS  PubMed  Google Scholar 

  • Gumprecht LA, Beasley VR, Weigel RM, Parker HM, Tumbleson ME, Bacon CW, Meredith FI, Haschek WM (1998) Development of fumonisin-induced hepatotoxicity and pulmonary edema in orally dosed swine: morphological and biochemical alterations. Toxicol Pathol 26(6):777–788

    Article  CAS  PubMed  Google Scholar 

  • Halloy DJ, Gustin PG, Bouhet S, Oswald IP (2005) Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused by Pasteurella multocida. Toxicology 213(1–2):34–44

    Article  CAS  PubMed  Google Scholar 

  • Harrer H, Laviad EL, Humpf HU, Futerman AH (2013) Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Mol Nutr Food Res 57(3):516–522

    Article  CAS  PubMed  Google Scholar 

  • Haschek WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD (2001) Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environ Health Perspect 109:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Bhandari N, Sharma RP (2002) Fumonisin B1 alters sphingolipid metabolism and tumor necrosis factor alpha expression in heart and lung of mice. Life Sci 71(17):2015–2023

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Lee YS, Lee YM, Oh S, Yun YP (2007) Yoo HS (2007) Elevation of sphingoid base 1-phosphate as a potential contributor to hepatotoxicity in fumonisin B1-exposed mice. Arch Pharm Res 30(8):962–969

    Article  CAS  PubMed  Google Scholar 

  • Laviad EL, Kelly S, Merrill AH Jr, Futerman AH (2012) Modulation of ceramide synthase activity via dimerization. J Biol Chem 287(25):21025–21033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau N, Debrauwer L, Sambou T, Bouhet S, Miller JD, Martin PG, Viadere JL, Pinton P, Puel O, Pineau T, Tulliez J, Galtier P, Oswald IP (2007) Fumonisin B1 exposure and its selective effect on porcine jejunal segment: sphingolipids, glycolipids and trans-epithelial passage disturbance. Biochem Pharmacol 74(1):144–152

    Article  CAS  PubMed  Google Scholar 

  • Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WC, Allegood J, Martinez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4):711–716

    CAS  PubMed  Google Scholar 

  • Merrill AH Jr, van Echten G, Wang E, Sandhoff K (1993) Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem 268(36):27299–27306

    CAS  PubMed  Google Scholar 

  • Merrill AH Jr, Wang E, Vales TR, Smith ER, Schroeder JJ, Menaldino DS, Alexander C, Crane HM, Xia J, Liotta DC, Meredith FI, Riley RT (1996) Fumonisin toxicity and sphingolipid biosynthesis. Adv Exp Med Biol 392:297–306

    Article  CAS  PubMed  Google Scholar 

  • Merrill AH Jr, Sullards MC, Wang E, Voss KA, Riley RT (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl 2):283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22(9):1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH Jr, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114(2):237–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullen TD, Jenkins RW, Clarke CJ, Bielawski J, Hannun YA, Obeid LM (2011) Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J Biol Chem 286(18):15929–15942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashi Y, Sassa T, Kihara A (2010) ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci USA 107(43):18439–18444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osuchowski MF, Edwards GL, Sharma RP (2005) Fumonisin B1-induced neurodegeneration in mice after intracerebroventricular infusion is concurrent with disruption of sphingolipid metabolism and activation of proinflammatory signaling. Neurotoxicology 26(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Petrache I, Kamocki K, Poirier C, Pewzner-Jung Y, Laviad EL, Schweitzer KS, Van Demark M, Justice MJ, Hubbard WC, Futerman AH (2013) Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS One 8(5):e62968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 281(35):25001–25005

    Article  CAS  PubMed  Google Scholar 

  • Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T, Erez-Roman R, Ben-David O, Levy M, Holzman D, Park H, Nyska A, Merrill AH Jr, Futerman AH (2010a) A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J Biol Chem 285(14):10911–10923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH Jr, Futerman AH (2010b) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278(44):43452–43459

    Article  CAS  PubMed  Google Scholar 

  • Riley RT, An NH, Showker JL, Yoo HS, Norred WP, Chamberlain WJ, Wang E, Merrill AH Jr, Motelin G, Beasley VR et al (1993) Alteration of tissue and serum sphinganine to sphingosine ratio: an early biomarker of exposure to fumonisin-containing feeds in pigs. Toxicol Appl Pharmacol 118(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J, Wolfbauer G, Albers JJ, Brunzell JD, Motulsky AG, Rieder MJ, Nickerson DA, Wijsman EM, Jarvik GP (2011) Linkage and association of phospholipid transfer protein activity to LASS4. J Lipid Res 52(10):1837–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheek S, Brown MS, Goldstein JL (1997) Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc Natl Acad Sci USA 94(21):11179–11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SCOOP (Scientific Cooperation on Questions to Food) Task 3.2.10 Collection of occurence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states. Subtask III: Fumonisins. (2003). Brussels, Belgium

  • Shephard GS, Burger HM, Gambacorta L, Gong YY, Krska R, Rheeder JP, Solfrizzo M, Srey C, Sulyok M, Visconti A, Warth B, van der Westhuizen L (2013) Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem Toxicol 62:217–225

  • Siloto EV, Oliveira EF, Sartori JR, Fascina VB, Martins BA, Ledoux DR, Rottinghaus GE, Sartori DR (2013) Lipid metabolism of commercial layers fed diets containing aflatoxin, fumonisin, and a binder. Poult Sci 92(8):2077–2083

    Article  CAS  PubMed  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277(38):35642–35649

    Article  CAS  PubMed  Google Scholar 

  • Wan Norhasima WM, Abdulamir AS, Abu Bakar F, Son R, Norhafniza A (2009) The health and toxic adverse effects of Fusarium fungal mycotoxin, Fumonisins, on human population. Am J Infect Dis 5:273–281

    Article  Google Scholar 

  • Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266(22):14486–14490

    CAS  PubMed  Google Scholar 

  • Zanotti G, Casiraghi M, Abano JB, Tatreau JR, Sevala M, Berlin H, Smyth S, Funkhouser WK, Burridge K, Randell SH, Egan TM (2009) Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol 297(1):L52–L63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Région Midi-Pyrénées, France. We thank Prof. John Woodley for careful editing and critical reading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Loiseau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Supplementary material 2 (DOC 876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiseau, N., Polizzi, A., Dupuy, A. et al. New insights into the organ-specific adverse effects of fumonisin B1: comparison between lung and liver. Arch Toxicol 89, 1619–1629 (2015). https://doi.org/10.1007/s00204-014-1323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1323-6

Keywords

Navigation