Skip to main content

Advertisement

Log in

Bioprospecting acid- and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Widespread use of chemical fertilizers and falling productivity in traditional agricultural practices has led to the biodiversity hotspot of North-Eastern region of India to face imminent threat to soil nutrients and biodiversity. The present work aimed to isolate rhizobacteria from Oryza sativa L. to evaluate their plant growth-promoting traits like indole, ammonia, siderophore production, and phosphate solubilization followed by in vitro plant growth promotion and anti-fungal assessment against Curvularia oryzae. Moreover, presence of heavy metals such as arsenic in chemical fertilizers and in groundwater contributes to arsenic contamination of agricultural soil. Taking this into consideration for the present study, the background metal content of the bulk soil, roots and grains of rice was measured. Arsenic tolerance of the rhizobacterial isolates was assessed using different concentrations of arsenite- and arsenate-supplemented media. 16S rRNA gene sequencing and phylogenetic tree analysis identified the isolates as Bacillus paramycoides, B. albus, B. altitudinis, B. koreensis, B. megaterium, B. wiedmannii, B. paramycoides, Chryseobacterium gleum, Stenotrophomonas maltophilia and Pseudomonas shirazica. Considering the acidic nature of the paddy growing soil, the growth kinetics of the isolates were monitored in acid and arsenic-supplemented conditions for 48 h of growth. Few isolates showed potent anti-fungal activity against the late blight phytopathogen, Curvularia oryzae MTCC 2605, apart from being potential growth promoters. The findings open vistas for the mass production of the characterized PGP rhizobacteria for their application in rehabilitation of the degrading arsenic contaminated paddy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All relevant data have been included within the article.

References

  • Abd El-Rahman AF, Shaheen HA, Abd El-Aziz RM, Ibrahim DS (2019) Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egypt J Biol Pest Control 29:1–11

    Article  Google Scholar 

  • Abdelmoteleb A, Troncoso-Rojas R, Gonzalez-Soto T, González-Mendoza D (2017) Antifungical activity of autochthonous Bacillus subtilis isolated from Prosopis juliflora against phytopathogenic fungi. Mycobiology 45:385–391. https://doi.org/10.5941/myco.2017.45.4.385

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria. Crop Sci 13:630

    Article  Google Scholar 

  • Aebi H (1984) Catalase in vitro. In: Packer L (ed) Oxygen radicals in biological systems, vol 105. Elsevier, San Diego, pp 121–126

    Chapter  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. https://doi.org/10.1111/1751-7915.12117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Anandaraj B, Leema R, Delapierre A (2010) Studies on influence of bioinoculants (Pseudomonas fluorescens, Rhizobium sp., Bacillus megaterium) in green gram. J Biosci Technol 1:95–99

    Google Scholar 

  • Banerjee A, Bareh DA, Joshi SR (2017) Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. J Soil Sci Plant Nutr 17(1):127–140

    CAS  Google Scholar 

  • Batista BD, Dourado MN, Figueredo EF, Hortencio RO, Marques JPR, Piotto FA et al (2021) The auxin-producing Bacillus thuringiensis RZ2MS9 promotes the growth and modifies the root architecture of tomato (Solanum lycopersicum cv. Micro-Tom). Arch Microbiol 203:3869–3882. https://doi.org/10.1007/s00203-021-02361-z

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66(2):250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhise KK, Bhagwat PK, Dandge PB (2017) Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech 7(2):105. https://doi.org/10.1007/s13205-017-0739-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Borthakur DN (1992) Agriculture of the North Eastern Region with Special Reference to Hill Agriculture, Beecee Prakashan, Guwahati, India

  • Buragohain M, Sarma HP (2012) A study on spatial distribution of arsenic in ground water samples of Dhemaji district of Assam, India by using Arc View GIS software. Sci Rev Chem Commun 2(1):7–11

    Article  CAS  Google Scholar 

  • Choudhury BU, Malang A, Webster R, Mohapatra KP, Verma BC, Kumar M et al (2017) Acid drainage from coal mining: effect on paddy soil and productivity of rice. Sci Total Environ 583:344–351. https://doi.org/10.1016/j.scitotenv.2017.01.074

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Rändler DK, M, Schmid M., Junge H, Borriss, et al (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8(7):e68818

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung EJ, Hossain MT, Khan A, Kim KH, Jeon CO, Chung YR (2015) Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J 31(2):152

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke PH, Cowan S (1952) Biochemical methods for bacteriology. Microbiology 6:187–197

    CAS  Google Scholar 

  • Codex Alimentarius Commission (2014) Proposed Draft Maximum Levels for Arsenic in Rice (Raw and Polished Rice). CX/CF 14/8/6. Rome, Italy: Food and Agriculture Organization of the United Nations; Geneva, Switzerland: World Health Organization. Available: ftp://ftp.fao.org/codex/meetings/cccf/cccf8/cf08_06e.pdf

  • Das N, Patel AK, Deka G, Das A, Sarma KP, Kumar M (2015) Geochemical Controls and Future Perspective of Arsenic Mobilization for Sustainable Groundwater Management: A Study from Northeast India. Groundw Sustain Dev 1(1–2):92–104. https://doi.org/10.1016/j.gsd.2015.12.002

    Article  Google Scholar 

  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S et al (2010) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359. https://doi.org/10.1093/jxb/erq409

    Article  CAS  PubMed  Google Scholar 

  • Devi R, Thakur R (2018) Screening and identification of bacteria for plant growth promoting traits from termite mound soil. J Pharmacogn Phytochem 7(2):1681–1686

    CAS  Google Scholar 

  • Dikshit KR, Dikshit JK (2014) North-east India: land, people and economy. Springer, Dordrecht

    Book  Google Scholar 

  • El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol 5:651

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasnacht M, Polacek N (2021) Oxidative stress in bacteria and the central dogma of molecular biology. Front Mol Biosci 8:671037. https://doi.org/10.3389/fmolb.2021.671037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi Pragash M, Narayanan KB, Naik PR, Sakthivel N (2009) Characterization of Chryseobacterium aquaticum strain PUPC1 producing a novel antifungal protease from rice rhizosphere soil. J Microbiol Biotechnol 19(1):99–107

    CAS  PubMed  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Gazi MR, Yokota M, Tanaka Y, Kanda S, Itabashi H (2007) Effects of protozoa on the antioxidant activity in the ruminal fluid and blood plasma of cattle. Anim Sci J 78(1):34–40. https://doi.org/10.1111/j.1740-0929.2006.00401

    Article  CAS  Google Scholar 

  • Ghosh S, Sar P (2013) Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res 47(19):6992–7005. https://doi.org/10.1016/j.watres.2013.08.044

    Article  CAS  PubMed  Google Scholar 

  • Gomes NC, Kosheleva IA, Abraham WR, Smalla K (2005) Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 54:21–33

    Article  CAS  PubMed  Google Scholar 

  • Goswami G, Deka P, Das P, Bora SS, Samanta R, Boro RC, Barooah M (2017) Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam. 3 Biotech 7(3):229. https://doi.org/10.1007/s13205-017-0864-9

    Article  PubMed  PubMed Central  Google Scholar 

  • GraphPad Prism version 9.0.0 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com

  • Harley JP, Prescott LM (2002) Laboratory exercises in microbiology, 5th edn. The McGraw-Hill Companies, New York

    Google Scholar 

  • Irshad S, Xie Z, Wang J, Nawaz LY, Wang Y, Mehmood S (2020) Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. J Hazard Mater 381:120903

    Article  CAS  PubMed  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906. https://doi.org/10.1094/mpmi.2002.15.9.894

    Article  CAS  PubMed  Google Scholar 

  • Janoušková M, Krak K, Vosátka M, Püschel D, Štorchová H (2017) Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS ONE 12(7):e0181525

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Joo G, Lee IJ, Lee KE, Kim JH (2014) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54(4):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129

    Article  CAS  Google Scholar 

  • Knaak N, Rohr AA, Fiuza LM (2007) In vitro effect of Bacillus thuringiensis strains and cry proteins in phytopathogenic fungi of paddy rice-field. Braz J Microbiol 38(3):526–530

    Article  Google Scholar 

  • Kumar S, Kumar Choudhary A, Chandra Suyal D, Makarana G, Goel R (2022) Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops. J Hazard Mater 425:127965. https://doi.org/10.1016/j.jhazmat.2021.127965

    Article  CAS  PubMed  Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128. https://doi.org/10.1016/j.ecoleng.2013.10.01

    Article  Google Scholar 

  • Lele N, Joshi PK (2009) Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environ Monit Assess 156:159. https://doi.org/10.1007/s10661-008-0472-6

    Article  PubMed  Google Scholar 

  • Lianzela (1997) Effects of shifting cultivation on the environment. Int J Soc Econ 24:785–790. https://doi.org/10.1108/03068299710178847

    Article  Google Scholar 

  • Lin SC, Chang TK, Huang WD, Lur HS, Shyu GS (2015) Accumulation of arsenic in rice plant: a study of an arsenic-contaminated site in Taiwan. Paddy Water Environ 13:11–18. https://doi.org/10.1007/s10333-013-0401-3

    Article  Google Scholar 

  • Lucas JA, Solano BR, Montes F, Ojeda J, Megias M, Manero FG (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Res 114(3):404–410

    Article  Google Scholar 

  • Majda M, Robert S (2018) The role of auxin in cell wall expansion. Int J Mol Sci 19:951. https://doi.org/10.3390/ijms19040951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Bruzos M, Grayston SJ, Forge T, Nelson LM (2021) Isolation and characterization of streptomycetes and pseudomonad strains with antagonistic activity against the plant parasitic nematode Pratylenchus penetrans and fungi associated with replant disease. Biol Contro 158:104599

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/s0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nath S, Deb B, Sharma I (2018) Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium- and lead-contaminated soil. Int Microbiol 21(1–2):35–45. https://doi.org/10.1007/s10123-018-0003-4

    Article  CAS  PubMed  Google Scholar 

  • Nevita T, Sharma GD, Pandey P (2018) Composting of rice-residues using lignocellulolytic plant-probiotic Stenotrophomonas maltophilia, and its evaluation for growth enhancement of Oryza sativa L. Environ Sustain 1(2):185–196

    Article  Google Scholar 

  • Nriagu P, Bhattacharya A, Mukherjee J, Bundschuh R, Zevenhoven R, Loeppert R (eds) (2007) vol 9. Elsevier, Amsterdam

    Google Scholar 

  • Okon Y, Bloemberg GV, Lugtenberg BJJ (1998) Biotechnology of biofertilization and phytostimulation. In: Altman A (ed) Agricultural biotechnology. Oxford, CRC Press

    Google Scholar 

  • Ortega-Morales BO, Santiago-García JL, Chan-Bacab MJ, Moppert X, Miranda-Tello E, Fardeau ML et al (2007) Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. J Appl Microbiol 102:254–264. https://doi.org/10.1111/j.1365-2672.2006.03085.x

    Article  CAS  PubMed  Google Scholar 

  • Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilizers and their impact on soil health. In: Dar GH, Bhat RA, Mehmood MA, Hakeem KR (eds) Microbiota and biofertilizers, vol 2. Springer, Cham

    Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, Ramos C, de Vicente A, Cazorla FM (2011) Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340(1):505–520

    Article  CAS  Google Scholar 

  • Puig J, Pauluzzi G, Guiderdoni E, Gantet P (2012) Regulation of shoot and root development through mutual signaling. Mol Plant 5:974–983. https://doi.org/10.1093/mp/sss047

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Dkhar DS, Tripathi AK, Singh NU, Kumar D, Das SK, Debnath A (2014) Growth performance of agriculture and allied sectors in the North East India. Econ Aff 59:783

    Google Scholar 

  • Saechow S, Thammasittirong A, Kittakoop P, Prachya S, Thammasittirong SNR (2018) Antagonistic activity against dirty panicle rice fungal pathogens and plant growth-promoting activity of Bacillus amyloliquefaciens BAS23. J Microbiol Biotechnol 28(9):1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1986) Toxicity of Pseudomonas fluorescens towards rice sheath-rot pathogen Acrocylindrium oryzae Saw. Curr Sci (Bangalore) 55:106–107

    Google Scholar 

  • Sanders ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp 63:e3064. https://doi.org/10.3791/3064

    Article  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaf folder pest. J Appl Entomol 132(6):469–479

    Article  Google Scholar 

  • Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2007) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139. https://doi.org/10.1007/s00284-007-9062-z

    Article  CAS  PubMed  Google Scholar 

  • Shylla L, Barik SK, Joshi SR (2021) Application of Native Bacillus sp. for Sustainable Jhum Agro-ecosystem. Proc Natl Acad Sci India Sect B Biol Sci 91(4):799–810

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. J Gen Plant Pathol 75(2):144–153

    Article  Google Scholar 

  • Singh AK (2004) Arsenic contamination in groundwater of North Eastern India. In Proceedings of 11th National Symposium on Hydrology with Focal Theme on Water Quality, National Institute of Hydrology, Roorkee, 255–262

  • Spaepen S, Vanderleyden J (2010) Auxin and plant-microbe interactions. CSH Perspect Biol 3:a001438–a001438. https://doi.org/10.1101/cshperspect.a001438

    Article  CAS  Google Scholar 

  • Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  PubMed  Google Scholar 

  • Suryadi Y, Susilowati DN, Fauziah F (2019) Management of plant diseases by PGPR-mediated induced resistance with special reference to tea and rice crops. In: Sayyed R (ed) Plant growth promoting rhizobacteria for sustainable stress management. Microorganisms for sustainability, vol 13. Springer, Singapore

    Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The rhizobium-plant symbiosis. Microbiol Rev 59:124–142. https://doi.org/10.1128/mr.59.1.124-142.1995

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangkhem HM, Herojit SA, Raj KKS, Linthoi W, Nandini C, Konthoujam ND et al (2015) Evaluation of some soil test methods in acid soils for available phosphorus for soybean of Imphal East District, Manipur (India). Afr J Agric Res 10:767–771. https://doi.org/10.5897/ajar2013.8367

    Article  Google Scholar 

  • Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H et al (2015) Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10(3):e0119058. https://doi.org/10.1371/journal.pone.0119058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarzábal LA, Monserrate L, Buela L, Chica E (2018) Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol 41(11):2343–2354

    Article  Google Scholar 

Download references

Acknowledgements

NA acknowledges the financial support received from Council of Scientific & Industrial Research [09/0347(12424)/2021-EMR-I] as fellowship to carry out the present study. Authors acknowledge DST-FIST[SR/FST/LSI-666/2016(C)] and UGC-SAP [F.4-7/2016/DRS-1(SAP-II)] for the financial support provided to the parent department.

Funding

The authors acknowledge the funding received from Council of Scientific & Industrial Research [09/0347(12424)/2021-EMR-I] as fellowship and also DST-FIST[SR/FST/LSI-666/2016(C)] and UGC-SAP [F.4-7/2016/DRS-1(SAP-II)] for the financial support provided to the parent department.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. NA carried out the material preparation, data collection and analysis. SRJ wrote the first draft and both authors contributed to improvement of the manuscript and approval of the final manuscript.

Corresponding author

Correspondence to Santa Ram Joshi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2738 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akoijam, N., Joshi, S.R. Bioprospecting acid- and arsenic-tolerant plant growth-promoting rhizobacteria for mitigation of arsenic toxicity in acidic agricultural soils. Arch Microbiol 205, 229 (2023). https://doi.org/10.1007/s00203-023-03567-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03567-z

Keywords

Navigation