Skip to main content
Log in

Evaluation of the infB and rpsB gene fragments as genetic markers intended for identification and phylogenetic analysis of particular representatives of the order Lactobacillales

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Detailed differentiation, classification, and phylogenetic analysis of the order Lactobacillales are performed using molecular techniques that involve the comparison of whole genomes, multilocus sequence analysis, DNA–DNA hybridisation, and 16S rRNA sequencing. Despite the wide application of the latter two techniques, issues associated with them are extensively discussed. Although complete genomic analyses are the most appropriate for phylogenetic studies, they are time-consuming and require high levels of expertise. Many phylogenetic/identification markers have been proposed for enterococci, lactobacilli, streptococci, and lactobacilli. However, none have been established for vagococci and some genera within the order Lactobacillales. The objective of the study was to find novel alternative housekeeping genes for classification, typing, and phylogenetic analysis of selected genera within the order Lactobacillales. We designed primers flanking variable regions of the infB (504 nt) and rpsB (333 nt) genes and amplified and sequenced them in 56 strains of different genera within the order Lactobacillales. Statistical analysis and characteristics of the gene regions suggested that they could be used for taxonomic purposes. Phylogenetic analyses, including assessment of (in)congruence between individual phylogenetic trees indicated the possibility of using the concatenation of the two genes as an alternative tool for the evaluation of phylogeny compared with the 16S rRNA gene representing the standard phylogenetic marker of prokaryotes. Moreover, infB, rpsB regions and their concatenate were phylogenetically consistent with two widely applied alternative genetic markers in taxonomy of particular Lactobacillales genera encoding the 60 kDa chaperonin protein (GroEL-hsp60) and phenylalanyl-tRNA synthetase, alpha subunit (pheS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Calmin G, Lefort F, Belbahri L (2008) Multi-loci sequence typing (MLST) for two lacto-acid bacteria (LAB) species: Pediococcus parvulus and P. damnosus. Mol Biotechnol 40:170–179

    Article  CAS  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  Google Scholar 

  • Chao SH, Sasamoto M, Kudo Y, Fujimoto J, Tsai YC, Watanabe K (2010) Lactobacillus odoratitofui sp. nov., isolated from stinky tofu brine. Int J Syst Evol Microbiol 60:2903–2907

    Article  CAS  Google Scholar 

  • Claesson MJ, van Sinderen D, O’Toole PW (2008) Lactobacillus phylogenomics-towards a reclassification of the genus. Int J Syst Evol Microbiol 58:2945–2954

    Article  CAS  Google Scholar 

  • Collins MD (2009) Genus Vagococcus. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), 2nd edn, vol 3. Springer, New York, pp 616–618

    Google Scholar 

  • Dan T, Liu W, Sun Z, Lv Q, Xu H, Song Y, Zhang H (2014) A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia. BMC Microbiol 14:150

    Article  Google Scholar 

  • Dobson CM, Deneer H, Lee S, Hemmingsen S, Glaze S, Ziola B (2002) Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol 52:2003–2010

    CAS  PubMed  Google Scholar 

  • Ehrmann MA, Müller MR, Vogel RF (2003) Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 53:7–13

    Article  CAS  Google Scholar 

  • Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    Article  CAS  Google Scholar 

  • Goh SH, Facklam RR, Chang M, Hill JE, Tyrrell GJ, Burns EC, Chan D, He C, Rahim T, Shaw C, Hemmingsen SM (2000) Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. J Clin Microbiol 38:3953–3959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haakensen M, Dobson CM, Hill JE, Ziola B (2009) Reclassification of Pediococcus dextrinicus (Coster and White 1964) back 1978 (approved lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 59:615–621

    Article  CAS  Google Scholar 

  • Hammes WP, Hertel Ch (2009) Genus Lactobacillus. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), 2nd edn, vol 3. Springer, New York, pp 465–511

    Google Scholar 

  • Kadri Z, Amar M, Ouadghiri M, Cnockaert M, Aerts M, El Farricha O, Vandamme P (2014) Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk. Int J Syst Evol Microbiol 64:2480–2485

    Article  CAS  Google Scholar 

  • Killer J, Dubná S, Sedláček I, Švec P (2014a) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 64:152–157

    Article  CAS  Google Scholar 

  • Killer J, Votavová A, Valterová I, Vlková E, Rada V, Hroncová Z (2014b) Lactobacillus bombi sp. nov., from the digestive tract of laboratory-reared bumblebee queens (Bombus terrestris). Int J Syst Evol Microbiol 64:2611–2617

    Article  CAS  Google Scholar 

  • Killer J, Švec P, Sedláček I, Cernohlávková J, Benada O, Hroncová Z, Havlík J, Vlková E, Rada V, Kopecny J, Kofronová O (2014c) Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int J Syst Evol Microbiol 64:731–737

    Article  CAS  Google Scholar 

  • Killer J, Mekadim C, Pechar R, Bunešová V, Mrázek J, Vlková E (2018) Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen. https://doi.org/10.1002/mbo3.579

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan Y, Rosen G, Hershberg R (2016) Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome 4(1):18

    Article  Google Scholar 

  • Lang JM, Darling AE, Eisen JA (2013) Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 8:e62510

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Ludwig W, Schleifer KH, Whitman WB (2009) Order II. Lactobacillales ord. nov. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W (eds) Bergey’s manual of systematic bacteriology (The Firmicutes), 2nd edn, vol 3. Springer, New York, p 464

    Google Scholar 

  • Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189:1199–1208

    Article  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  Google Scholar 

  • Mao Y, Chen M, Horvath P (2015) Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 65:4682–4688

    Article  CAS  Google Scholar 

  • Martin DP, Murrell B, Khoosal A, Muhire B (2007) Detecting and analyzing genetic recombination using RDP4. Methods Mol Biol 1525:433–460

    Article  Google Scholar 

  • Martinez-Murcia AJ, Monera A, Saavedra MJ, Oncina R, Lopez-Alvarez M, Lara E, Figueras MJ (2011) Multilocus phylogenetic analysis of the genus Aeromonas. Syst Appl Microbiol 34:189–199

    Article  CAS  Google Scholar 

  • Mayo B, van Sinderen D, Ventura M (2008) Genome analysis of food grade lactic acid-producing bacteria: from basics to applications. Curr Genom 9:169–183

    Article  CAS  Google Scholar 

  • Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J (2005a) Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150

    Article  CAS  Google Scholar 

  • Naser SM, Thompson FL, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Thompson CC, Vancanneyt M, Swings J (2005b) Phylogeny and identification of Enterococci by atpA gene sequence analysis. J Clin Microbiol 43:2224–2230

    Article  CAS  Google Scholar 

  • Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J (2007) Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57:2777–2789

    Article  CAS  Google Scholar 

  • Patwardhan A, Ray S, Roy A (2014) Molecular markers in phylogenetic studies—a review. J Phylogen Evol Biol 2:131

    Google Scholar 

  • Puertas A, Arahal DR, Ibarburu I, Elizaquível P, Aznar R, Dueñas MT (2014) Lactobacillus sicerae sp. nov., a lactic acid bacterium isolated from Spanish natural cider. Int J Syst Evol Microbiol 64:2949–2955

    Article  CAS  Google Scholar 

  • Rosselló-Móra R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  Google Scholar 

  • Rosselló-Móra R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38:209–216

    Article  Google Scholar 

  • Roux S, Enault F, Bronner G, Debroas D (2011) Comparison of 16S rRNA and protein-coding genes as molecular markers for assessing microbial diversity (Bacteria and Archaea) in ecosystems. FEMS Microbiol Ecol 78:617–628

    Article  CAS  Google Scholar 

  • Salvetti E, Fondi M, Fani R, Torriani S, Felis GE (2013) Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst Appl Microbiol 36:291–305

    Article  CAS  Google Scholar 

  • Švec P, Devriese LA (2009) Genus Enterococcus. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W (edn) Bergey’s manual of systematic bacteriology (The Firmicutes), 2nd edn, vol 3. Springer, New York, pp 594–607

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41

    Article  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  Google Scholar 

  • Tomasini N, Lauthier JJ, Llewellyn MS, Diosque P (2013) MLSTest: novel software for multi-locus sequence data analysis in eukaryotic organisms. Infect Genet Evol 20:188–196

    Article  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Meylan V, Klaenhammer TR, Zink R (2003) Analysis, characterization, and loci of the tuf genes in lactobacillus and bifidobacterium species and their direct application for species identification. Appl Environ Microbiol 69:6908–6922

    Article  CAS  Google Scholar 

  • Wang Z, Wu M (2013) A phylum-level bacterial phylogenetic marker database. Mol Biol Evol 30(6):1258–1262

    Article  CAS  Google Scholar 

  • Wu D, Jospin G, Eisen JA (2013) Systematic identification of gene families for use as “markers” for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 8(10):e77033

    Article  CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  Google Scholar 

  • Zhang ZG, Ye ZQ, Yu L, Shi P (2011) Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 11:1

    Article  CAS  Google Scholar 

  • Zheng J, Ruan L, Sun M, Gänzle MA (2015) Genomic view of Lactobacilli and Pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 81:7233–7243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Project Excellence (no. CZ.02.1.01/0.0/0.0/15_003/0000460), the Czech Health Research Council (Project no. 16-27449A) and the Institution research Project (no. RO 0318) of the Food Research Institute Prague (Ministry of Agriculture of the Czech Republic). This work is dedicated to the memory of our teacher prof. Ing. Vojtěch Rada, C.Sc., whose enthusiasm, support and precious advices contributed so much to this work. We will always be grateful to him for this.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Killer.

Ethics declarations

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the study involving animals were in accordance with the ethical standards of the institution or practice at which the study was conducted.

Conflict of interest

The authors have no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1772 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekadim, C., Killer, J., Mrázek, J. et al. Evaluation of the infB and rpsB gene fragments as genetic markers intended for identification and phylogenetic analysis of particular representatives of the order Lactobacillales. Arch Microbiol 200, 1427–1437 (2018). https://doi.org/10.1007/s00203-018-1554-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1554-7

Keywords

Navigation