Skip to main content
Log in

Characterization of a Corynebacterium glutamicum dnaB mutant that shows temperature-sensitive growth and mini-cell formation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is known to perform a unique form of cell division called post-fission snapping division. In order to investigate the mechanism of cell division of this bacterium, we isolated temperature-sensitive mutants from C. glutamicum wild-type strain ATCC 31831, and found that one of them, M45, produced high frequencies of mini-cells with no nucleoids. Cell pairs composed of an elongated cell, with one nucleoid, connected to a mini-cell, with no nucleoids, were occasionally observed. The temperature sensitivity and mini-cell formation of M45 was complemented by a 2-kb DraI-EcoRI fragment derived from the ATCC 31831 chromosomal DNA, which carried a dnaB homolog encoding a replicative DNA helicase. DNA sequence analysis revealed that M45 carried a missense mutation in the dnaB gene, which caused a substitution of Thr364 to Ile. Microscopic observation after 4ʹ,6-diamidino-2-phenylindole staining revealed that the DNA content of single cells was decreased by culturing at the restrictive temperature, suggesting that the mutation affects chromosomal replication. These results suggest that the C. glutamicum dnaB mutant performs an asymmetric cell division even after DNA replication is inhibited, which results in the production of mini-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arai K, Kornberg A (1979) A general priming system employing only dnaB protein and primase for DNA replication. Proc Natl Acad Sci U S A 76:4308–4312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523

    Article  PubMed Central  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  • Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776

    Article  CAS  PubMed  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1988) Isolation and properties of minB, a complex genetic locus involved in correct placement of the division site in Escherichia coli. J Bacteriol 170:2106–2112

    PubMed Central  PubMed  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1990) Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci USA 87:1129–1133

    Article  PubMed Central  PubMed  Google Scholar 

  • Donovan C, Schwaiger A, Krämer R, Bramkamp M (2010) Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J Bacteriol 192:3441–3451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donovan C, Sieger B, Krämer R, Bramkamp M (2012) A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 84:105–116

    Article  CAS  PubMed  Google Scholar 

  • Donovan C, Schauss A, Krämer R, Bramkamp M (2013) Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum. PLoS ONE 8:e55078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dreiseikelmann B, Riedel HD, Schuster H (1987) A DnaB-like protein of Pseudomonas aeruginosa. Nucleic Acids Res 15:385–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiuza M, Canova MJ, Zanella-Cléon I, Becchi M, Cozzone AJ, Mateos LM, Kremer L, Gil JA, Molle V (2008) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112

    Article  CAS  PubMed  Google Scholar 

  • Ginda K, Bezulska M, Ziółkiewicz M, Dziadek J, Zakrzewska-Czerwińska J, Jakimowicz D (2013) ParA of Mycobacterium smegmatis co-ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant DivIVA. Mol Microbiol 87:998–1012

    Article  CAS  PubMed  Google Scholar 

  • Günther E, Bagdasarian M, Schuster H (1984) Cloning of the dnaB gene of Escherichia coli: the dnaB gene of groPB534 and groPB612 and the replication of phage lambda. Mol Gen Genet 193:225–230

    Article  PubMed  Google Scholar 

  • Hett EC, Rubin EJ (2008) Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72:126–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiraga S, Niki H, Ogura T, Ichinose C, Mori H, Ezaki B, Jaffé A (1989) Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol 171:1496–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirasawa T, Kumagai Y, Nagai K, Wachi M (2003) A Corynebacterium glutamicum rnhA recG double mutant showing lysozyme-sensitivity, temperature-sensitive growth, and UV-sensitivity. Biosci Biotechnol Biochem 67:2416–2424

    Article  CAS  PubMed  Google Scholar 

  • Hirota Y, Jacob F, Ryter A, Buttin G, Nakai T (1968) On the process of cellular division in Escherichia coli. I. Asymmetrical cell division and production of deoxyribonucleic acid-less bacteria. J Mol Biol 35:175–192

    Article  CAS  PubMed  Google Scholar 

  • Honrubia MP, Fernández FJ, Gil JA (1998) Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum. Mol Gen Genet 259:97–104

    Article  CAS  PubMed  Google Scholar 

  • Honrubia MP, Ramos A, Gil JA (2001) The cell division genes ftsQ and ftsZ, but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum ATCC 13869. Mol Genet Genomics 265:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Jakimowicz D, Mouz S, Zakrzewska-Czerwinska J, Chater KF (2006) Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 188:1710–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones LJ, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  CAS  PubMed  Google Scholar 

  • Kaito C, Kurokawa K, Hossain MS, Akimitsu N, Sekimizu K (2002) Isolation and characterization of temperature-sensitive mutants of the Staphylococcus aureus dnaC gene. FEMS Microbiol Lett 210:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kijima N, Goyal D, Takada A, Wachi M, Nagai K (1998) Induction of only limited elongation instead of filamentation by inhibition of cell division in Corynebacterium glutamicum. Appl Microbiol Biotechnol 50:227–232

    Article  CAS  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. Part 1. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 50:193–205

    Article  Google Scholar 

  • Kobayashi M, Asai Y, Hatakeyama K, Kijima N, Wachi M, Nagai K, Yukawa H (1997) Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria. Biochem Biophys Res Commun 236:383–388

    Article  CAS  PubMed  Google Scholar 

  • LeBowitz JH, McMacken R (1986) The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 261:4738–4748

    CAS  PubMed  Google Scholar 

  • Lee CS, Nam JY, Son ES, Kwon OC, Han W, Cho JY, Park YJ (2012) Next-generation sequencing-based genome-wide mutation analysis of l-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol 50:860–863

    Article  CAS  PubMed  Google Scholar 

  • Letek M, Ordóñez E, Vaquera J, Margolin W, Flärdh K, Mateos LM, Gil JA (2008) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol 190:3283–3292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Wu Z, Han S, Lin Y, Zheng S (2011) Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol 193:6096–6097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lv Y, Liao J, Wu Z, Han S, Lin Y, Zheng S (2012) Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria. J Bacteriol 194:742–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malathi KC, Wachi M, Nagai K (1999) Isolation of the murI gene from Brevibacterium lactofermentum ATCC 13869 encoding D-glutamate racemase. FEMS Microbiol Lett 175:193–196

    CAS  PubMed  Google Scholar 

  • Nakayama K, Kitada S, Kinoshita S (1961) Studies on lysine fermentation I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 7:145–154

    Article  CAS  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  CAS  PubMed  Google Scholar 

  • Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos A, Letek M, Campelo AB, Vaquera J, Mateos LM, Gil JA (2005) Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology 151:2563–2572

    Article  CAS  PubMed  Google Scholar 

  • Ricard M, Hirota Y (1973) Process of cellular division in Escherichia coli: physiological study on thermosensitive mutants defective in cell division. J Bacteriol 116:314–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers HJ, McConnell M, Burdett ID (1970) The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J Gen Microbiol 61:155–171

    Article  CAS  PubMed  Google Scholar 

  • Rosario CJ, Singer M (2007) The Myxococcus xanthus developmental program can be delayed by inhibition of DNA replication. J Bacteriol 189:8793–8800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto Y, Nakai S, Moriya S, Yoshikawa H, Ogasawara N (1995) The Bacillus subtilis dnaC gene encodes a protein homologous to the DnaB helicase of Escherichia coli. Microbiology 141:641–644

    Article  CAS  PubMed  Google Scholar 

  • Sano K, Shiio I (1970) Microbial production of l-lysine III. Production by mutants resistant to S-(2-aminoethyl)-l-cysteine. J Gen Appl Microbiol 16:373–391

    Article  CAS  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sclafani RA, Wechsler JA (1981) Deoxyribonucleic acid initiation mutation dnaB252 is suppressed by elevated dnaC + gene dosage. J Bacteriol 146:418–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiio I, Nakamori S (1970) Microbial production of l-threonine. Part II. Production by α-amino-β-hydroxyvaleric acid resistant mutants of glutamate producing bacteria. Agric Biol Chem 34:448–456

    Article  CAS  Google Scholar 

  • Tsuchida T, Yoshinaga F, Kubota K, Momose H (1975) Production of l-valine by 2-thiazolealanine resistant mutants derived from glutamic acid producing bacteria. Agric Biol Chem 39:1319–1322

    Article  CAS  Google Scholar 

  • Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wachi M, Wijayarathna CD, Teraoka H, Nagai K (1999) A murC gene from coryneform bacteria. Appl Microbiol Biotechnol 51:223–228

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Montero Llopis P, Rudner DZ (2013) Organization and segregation of bacterial chromosomes. Nat Rev Genet 14:191–203

    Article  CAS  PubMed  Google Scholar 

  • Wijayarathna CD, Wachi M, Nagai K (2001) Isolation of ftsI and murE genes involved in peptidoglycan synthesis from Corynebacterium glutamicum. Appl Microbiol Biotechnol 55:466–470

    Article  CAS  PubMed  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Wachi.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, M., Hirasawa, T. & Wachi, M. Characterization of a Corynebacterium glutamicum dnaB mutant that shows temperature-sensitive growth and mini-cell formation. Arch Microbiol 196, 871–879 (2014). https://doi.org/10.1007/s00203-014-1026-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1026-7

Keywords

Navigation