Skip to main content
Log in

Next-generation sequencing-based genome-wide mutation analysis of l-lysine-producing Corynebacterium glutamicum ATCC 21300 strain

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In order to identify single nucleotide polymorphism and insertion/deletion mutations, we performed whole-genome re-sequencing of the enhanced l-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. In total, 142 single nucleotide polymorphisms and 477 insertion/deletion mutations were identified in the ATCC 21300 strain when compared to 3,434 predicted genes of the wild-type C. glutamicum ATCC 13032 strain. Among them, 110 transitions and 29 transversions of single nucleotide polymorphisms were found from genes of the ATCC 21300 strain. In addition, 11 genes, involved in the L-lysine biosynthetic pathway and central carbohydrate metabolism, contained mutations including single nucleotide polymorphisms and insertions/deletions. Interestingly, RT-PCR analysis of these 11 genes indicated that they were normally expressed in the ATCC 21300 strain. This information of genome-wide gene-associated variations will be useful for genome breeding of C. glutamicum in order to develop an industrial amino acid-producing strain with minimal mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, D.R. 2006. Whole-genome re-sequencing. Curr. Opin. Genet. Dev.16, 545–552.

    Article  PubMed  CAS  Google Scholar 

  • Eikmanns, B.J., Thum-Schmitz, N., Eggeling, L., Lüdtke, K.U., and Sahm, H. 1994. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology140, 1817–1828.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, M. and Nakagawa, S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes Appl. Microbiol. Biotechnol.62, 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, M., Ohnishi, J., and Mitsuhashi, S. 2005. Genome breeding of an amino acid-producing Corynebacterium glutamicum mutant, pp. 179–189. In Barredo, J.L.S. (ed.), Microbial Processes and Products. Humana Press, Totowa, USA.

    Chapter  Google Scholar 

  • Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B.J., Gaigalat, L., andet al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol.104, 5–25.

    Article  PubMed  CAS  Google Scholar 

  • Kelle, R., Hermann, T., and Bathe, B. 2005. l-Lysine production. pp. 465–488. In Eggeling, L. and Bott, M. (eds.), Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Kinoshita, S., Udaka, S., and Shimono, M. 1957. Studies on amino acid fermentation. Part I. Production of l-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol.3, 193–205.

    Article  CAS  Google Scholar 

  • Lee, J.K. 2010. Carbon metabolism and its global regulation in Corynebacterium glutamicum. Kor. J. Microbiol. Biotechnol. 38, 349–361.

    CAS  Google Scholar 

  • Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup. 2009. The Sequence alignment/ map (SAM) format and SAMtools. Bioinformatics25, 2078–2079.

    Article  PubMed  Google Scholar 

  • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., andet al. 2010. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, S. 2002. The complete genome sequencing of Corynebacterium glutamicum ATCC 13032. Abstr. 21. Proceedings of the 9th International Symposium on the Genetics of Industrial Microorganisms.

  • Ohnishi, J., Katahira, R., Mitsuhashi, S., Kakita, S., and Ikeda, M. 2005. A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol. Lett.242, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, J., Mitsuhashi, S., Hayashi, M., Ando, S., Yokoi, H., Ochiai, K., and Ikeda, M. 2002. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl. Microbiol. Biotechnol.58, 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Udaka, S. 1960. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 79, 754–755.

    PubMed  CAS  Google Scholar 

  • von Bubnoff, A. 2008. Next-generation sequencing: The race is on. Cell132, 721–723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jin Park.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CS., Nam, JY., Son, ES. et al. Next-generation sequencing-based genome-wide mutation analysis of l-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol. 50, 860–863 (2012). https://doi.org/10.1007/s12275-012-2109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2109-2

Keywords

Navigation