Skip to main content
Log in

Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eskridge, S.L., Macera, C.A., Galarneau, M.R., Holbrook, T.L., Woodruff, S.I., MacGregor, A.J., Morton, D.J., Shaffer, R.A.: Injuries from combat explosions in Iraq: injury type, location, and severity. Injury 43, 1678–1682 (2012). doi:10.1016/j.injury.2012.05.027

  2. Heltemes, K.J., Holbrook, T.L., MacGregor, A.J., Galarneau, M.R.: Blast-related mild traumatic brain injury is associated with a decline in self-rated health amongst US military personnel. Injury 43, 1990–1995 (2012). doi:10.1016/j.injury.2011.07.021

    Article  Google Scholar 

  3. Goldstein, L.E., Fisher, A.M., Tagge, C.A., et al.: Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4, 134–160 (2012). doi:10.1126/scitranslmed.3003716

    Google Scholar 

  4. McKee, A.C., Robinson, M.E.: Military-related traumatic brain injury and neurodegeneration. Alzheimer’s Dement. 10, S242–S253 (2014). doi:10.1016/j.jalz.2014.04.003

    Article  Google Scholar 

  5. Panzer, M.B., Matthews, K.A., Yu, A.W., Morrison, B., Meaney, D.F., Bass, C.R.: A multiscale approach to blast neurotrauma modeling: Part I—Development of novel test devices for in vivo and in vitro blast injury models. Front. Neurol. 3, 46 (2012). doi:10.3389/fneur.2012.00046

    Article  Google Scholar 

  6. Gupta, R.J., Przekwas, A.J.: Mathematical models of blast induced TBI: Current status, challenges and prospects. Front. Neurotrauma 4, 59 (2013). doi:10.3389/fneur.2013.00059

    Google Scholar 

  7. Roberts, J.C., Merkle, A.C., Biermann, P.J., Ward, E.E., Carkhuff, B.G.: Computational and experimental models of the human torso for non-penetrating ballistic impact. J. Biomech. 40, 125–136 (2007). doi:10.1016/j.jbiomech.2005.11.003

    Article  Google Scholar 

  8. Gupta, R.K., Przekwas, A.J.: A Framework for multiscale modeling of warfighter blast injury protection. In: Proceedings of the ICCM2015, Auckland, NZ (2015)

  9. Hull, J.B.: An investigation into the mechanism of traumatic amputation by explosive blast. Doctor of medicine thesis, University of Birmingham (1995)

  10. Brands, D.: Predicting brain mechanics during closed head impact. Ph.D. thesis, Eindhoven University of Technology (2002)

  11. Ji, S., Ghadyani, H., Bolander, R.P., Beckwith, J.G., Ford, J.C., McAllister, T.W., Flashman, L.A., Paulsen, K.D., Ernstrom, K., Jain, S., Raman, R., Zhang, L., Greenwald, R.M.: Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42, 11–24 (2014). doi:10.1007/s10439-013-0907-2

    Article  Google Scholar 

  12. Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8, 1–14 (2008). doi:10.1533/ijcr.2003.0243

    Google Scholar 

  13. Kleiven, S.: Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51, 81–114 (2007)

    Google Scholar 

  14. Takhounts, E.G., Ridella, S.A., Hasija V., Tannous, R.E., Campbell, J.Q., Malone, D., Danelson, K., Stitzel, J., Rowson, S., Duma, S.: Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52, 1–31 (2008)

  15. Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18, 21–30 (2001). doi:10.1089/089771501750055749

    Article  Google Scholar 

  16. Gayzik, F.S., Moreno, D.P., Danelson, K.A., McNally, C., Klinich, K.D., Stitzel, J.D.: External landmark, body surface, and volume data of a mid-sized male in seated and standing postures. Ann. Biomed. Eng. 40, 2019–2032 (2012). doi:10.1007/s10439-012-0546-z

    Article  Google Scholar 

  17. Roberts, J.C., Harrigan, T.P., Ward, E.E., Taylor, T.M., Annett, M.S., Merkel, A.C.: Human head-neck computational model for assessing blast injury. J. Biomech. 45, 2899–2908 (2012). doi:10.1016/j.jbiomech.2012.07.027

  18. Cotton, R.T., Pearce, C.W., Young, P.G., Kota, N., Leung, A.C., Bagchi, A., Qidwai, S.M.: Development of a geometrically accurate and adaptable finite element head model for impact simulation: the Naval Research Laboratory-Simpleware Head Model. Comput. Methods Biomech. Biomed. Eng. 19, 101–113 (2016). doi:10.1080/10255842.2014.994118

    Article  Google Scholar 

  19. http://www.zygote.com/. Accessed 12 July 2017

  20. Tan, X.G., Kannan, R., Przekwas, A.J., Ott, K., Harrigan, T., Roberts, J., Merkle, A.: An enhanced articulated human body model under C4 blast loadings. In: IMECE 2012-89067, Proceedings of the ASME International Mechanical Engineering Congress & Exposition (2012)

  21. Kingery, C.N., Bulmash, G.: Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst. No. ARBRL-TR-02555. US Army Armament Research and Development Center, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland (1984)

  22. Toro, E.F., Spruce, M., Speares, M.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). doi:10.1007/BF01414629

    Article  MATH  Google Scholar 

  23. Venkatakrishnan, V.: Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118, 120–130 (1995). doi:10.1006/jcph.1995.1084

    Article  MATH  Google Scholar 

  24. Badia, S., Nobile, F., Vergara, C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008). doi:10.1016/j.jcp.2008.04.006

    Article  MathSciNet  MATH  Google Scholar 

  25. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms. Comput. Mech. Appl. Mech. Eng. 85, 273–310 (1991). doi:10.1016/0045-7825(91)90100-K

    Article  MathSciNet  MATH  Google Scholar 

  26. Baeck, K., Goffin, J., Vander Sloten, J.: An investigation into the use and limitations of different spatial integration schemes and finite element software in head impact analyses. Comput. Mech. Biomech. Biomed. Eng. 17, 405–415 (2014). doi:10.1080/10255842.2012.688106

  27. Hallquist, J.O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation, Livermore, CA, USA (2006). ISBN 0-9778540-0-0. http://www.lstc.com/pdf/ls-dyna_theory_manual_2006.pdf

  28. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2001)

    MATH  Google Scholar 

  29. Wallis, G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill, New York (1969)

    Google Scholar 

  30. Kieffer, S.W.: Sound speed in liquid-gas mixtures: Water-air and water-steam. J. Geophys. Res. 82, 2895–2904 (1977). doi:10.1029/JB082i020p02895

  31. Tan, X.G., Przekwas, A.J.: A computational model for articulated human body dynamics. Int. J. Hum. Factors Model. Simul. 2, 85–110 (2011). doi:10.1504/IJHFMS.2011.041639

    Article  Google Scholar 

  32. Kannan, R., Harrand, V., Tan, X.G., Yang, H.Q., Przekwas, A.J.: Highly scalable computational algorithms on emerging parallel machine multicore architectures II: development and implementation in the CSD and FSI contexts. J. Parallel Distrib. Comput. 74, 2808–2817 (2014). doi:10.1016/j.jpdc.2014.05.001

  33. Godunov, S.K.: A finite-difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  34. Bryson, A.E., Gross, R.W.F.: Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech. 10, 1–16 (1961). doi:10.1017/S0022112061000019

    Article  MathSciNet  MATH  Google Scholar 

  35. Ripley, R.C., Lien, F.-S., Yovanovich, M.M.: Numerical simulation of shock diffraction on unstructured meshes. Comput. Fluids 35, 1420–1431 (2006). doi:10.1016/j.compfluid.2005.05.001

  36. Goeller, J., Wardlaw, A., Treichler, D., O’Bruba, J., Weiss, G.: Investigation of cavitation as a possible traumatic brain injury (TBI) damage mechanism from blast. J. Neurotrauma 29, 1970–1981 (2012). doi:10.1089/neu.2011.2224

    Article  Google Scholar 

  37. Tan, X.G., Przekwas, A.J., Long, J.B.: Validations of virtual animal model for investigation of shock/blast wave TBI. In: IMECE 2013-64587, Proceedings of the ASME International Mechanical Engineering Congress and Exposition (2013). doi:10.1115/IMECE2013-64587

  38. Dawson, S.L., Hirsh, C.S., Lucas, F.V., Sebek, B.A.: The contrecoup phenomenon: Reappraisal of a classical problem. Hum. Pathol. 11, 155–166 (1980). doi:10.1016/S0046-8177(80)80136-5

  39. Puso, M., Sanders, J., Settgast, R., Liu, B.: An embedded mesh method in a multiple material ALE. Comput. Mech. Appl. Mech. Eng. 245, 273–289 (2012). doi:10.1016/j.cma.2012.07.014

    Article  MathSciNet  MATH  Google Scholar 

  40. Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S., Matsumoto, Y.: A full Eulerian finite difference approach for solving fluid-structure coupling problems. J. Comput. Phys. 230, 596–627 (2011). doi:10.1016/j.jcp.2010.09.032

    Article  MathSciNet  MATH  Google Scholar 

  41. de Lanerolle, N.C., Bandak, F., Kang, D., Li, A.Y., Du, F., Swauger, P., Parks, S., Ling, G., Kim, J.H.: Characteristics of an explosive blast-induced brain injury in an experimental model. J. Neuropathol. Exp. Neurol. 70, 1046–1057 (2011). doi:10.1097/NEN.0b013e318235bef2

    Article  Google Scholar 

  42. Przekwas, A.J., Somayaji, M.R., Gupta, R.K.: Synaptic mechanisms of blast-induced brain injury. Front. Neurol. 7, 2 (2016). doi:10.3389/fneur.2016.00002

    Article  Google Scholar 

Download references

Acknowledgements

This work has resulted from the research project “Physics and Physiology Based Human Body Model of Blast Injury and Protection” (Contract # W81XWH-14-C-0045) managed by the DoD Blast Injury Research Program Coordinating Office. The authors would like to express their appreciation to the DoD Congressionally Directed Medical Research Programs (Contract # W81XWH-09-2-0168) for supporting the initial work. The content included in this work does not necessarily reflect the position or policy of the US government. The authors are very grateful to the reviewers and Amit Bagchi for their careful and meticulous reading of the paper. The reviews were helpful to finalize the manuscript. The authors would like to kindly acknowledge them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Tan.

Ethics declarations

Conflict of interest

The authors have no personal or financial conflict interest that influenced this work.

Additional information

Communicated by O. Petel and S. Ouellet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X.G., Przekwas, A.J. & Gupta, R.K. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury. Shock Waves 27, 889–904 (2017). https://doi.org/10.1007/s00193-017-0740-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0740-x

Keywords

Navigation