Skip to main content

Modelling Blast Brain Injury

  • Chapter
  • First Online:
Blast Injury Science and Engineering

Abstract

The consequences of blast traumatic brain injury (blast-TBI) in humans are largely determined by the characteristics of the trauma insult and, within certain limits, the individual responses to the lesions inflicted (Maas et al., Lancet Neurol. 2008;7:728–41). In blast-TBI, the mechanisms of brain vulnerability to the detonation of an explosive device are not completely understood. They most likely result from a combination of the different physical aspects of the blast phenomenon, specifically extreme pressure oscillations (blast overpressure wave), projectile penetrating fragments and acceleration–deceleration forces, creating a spectrum of brain injury that ranges from mild to severe blast-TBI (Hicks et al., J Trauma. 2010; 68:1257-63). The pathophysiology of penetrating and inertially driven blast-TBI has been extensively investigated for many years. However, the brain damage caused by blast overpressure is much less understood and is unique to this type of TBI (Chen et al., J Neurotrauma. 2009; 26:861–76). Indeed, there continues to be debate about how the pressure wave is transmitted and reflected through the brain and how it causes cellular damage (Nakagawa et al., J Neurotrauma. 2011; 28:1101–19). No single model can mimic the clinical and mechanical complexity resulting from a real-life blast-TBI (Chen et al., J Neurotrauma. 2009; 26:861–76). The different models, non-biological (in silico or surrogate physical) and biological (ex vivo, in vitro or in vivo), tend to complement each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, Tsukamoto A, et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma. 2011;28:1101–19.

    Article  Google Scholar 

  2. Gupta RK, Przekwas A. Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front Neurol. 2013;4:59.

    Article  Google Scholar 

  3. Risling M, Davidsson J. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front Neurol. 2012;3:30.

    Article  Google Scholar 

  4. Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B. Brain injuries from blast. Ann Biomed Eng. 2012;40:185–202.

    Article  Google Scholar 

  5. Yoganandan N, Stemper BD, Pintar FA, Maiman DJ. Use of postmortem human subjects to describe injury responses and tolerances. Clin Anat. 2011;24:282–93.

    Article  Google Scholar 

  6. Arun P, Spadaro J, John J, Gharavi RB, Bentley TB, Nambiar MP. Studies on blast traumatic brain injury using in-vitro model with shock tube. Neuroreport. 2011;22:379–84.

    Article  Google Scholar 

  7. Bahr BA. Long-term hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J Neurosci Res. 1995;42:294–305.

    Article  CAS  Google Scholar 

  8. Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112:614–22.

    Article  CAS  Google Scholar 

  9. Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology. 2013;119:1137–48.

    Article  CAS  Google Scholar 

  10. Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019;123:601–9.

    Article  CAS  Google Scholar 

  11. Effgen GB, Hue CD, Vogel E 3rd, Panzer MB, Meaney DF, Bass CR, et al. A multiscale approach to blast Neurotrauma modeling: part II: methodology for inducing blast injury to in vitro models. Front Neurol. 2012;3:23.

    Article  Google Scholar 

  12. Effgen GB, Vogel EW 3rd, Lynch KA, Lobel A, Hue CD, Meaney DF, et al. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures. J Neurotrauma. 2014;31:1202–10.

    Article  Google Scholar 

  13. Campos-Pires R, Koziakova M, Yonis A, Pau A, Macdonald W, Harris K, et al. Xenon protects against blast-induced traumatic brain injury in an in vitro model. J Neurotrauma. 2018;35:1037–44.

    Article  Google Scholar 

  14. Campos-Pires R, Yonis A, Macdonald W, Harris K, Edge CJ, Mahoney PF, et al. A novel in vitro model of blast traumatic brain injury. J Vis Exp. 2018;

    Google Scholar 

  15. Yarnell AM, Shaughness MC, Barry ES, Ahlers ST, McCarron RM, Grunberg NE. Blast traumatic brain injury in the rat using a blast overpressure model. Curr Protoc Neurosci. 2013;62(1):9–41.

    Article  Google Scholar 

  16. Goldstein LE, McKee AC, Stanton PK. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy. Alzheimers Res Ther. 2014;6:64.

    Article  Google Scholar 

  17. Cernak I. Animal models of head trauma. NeuroRx. 2005;2:410–22.

    Article  Google Scholar 

  18. Cernak I. Blast-induced neurotrauma models and their requirements. Front Neurol. 2014;5:128.

    Article  Google Scholar 

  19. Elder GA, Stone JR, Ahlers ST. Effects of low-level blast exposure on the nervous system: is there really a controversy? Front Neurol. 2014;5:269.

    Article  Google Scholar 

  20. Bowen IG, Fletcher ER, Richmond DR. Estimate of man’s tolerance to the direct effects of air blast. DASA. Lovelace Foundation for Medical Education and Research, New Mexico, USA; 1968. p. 1–44.

    Google Scholar 

  21. White CS, Bowen IG, Richmond DR. Biological tolerance to air blast and related biomedical criteria. Civil Effects Test Operations Exercise, Washington DC, USA; 1965:1–239.

    Google Scholar 

  22. Ahlers ST, Vasserman-Stokes E, Shaughness MC, Hall AA, Shear DA, Chavko M, McCarron RM, Stone JR. Assessment of the effects of acute and repeated exposure to blast overpressure in rodents: toward a greater understanding of blast and the potential ramifications for injury in humans exposed to blast. Front Neurol. 2012;3:32.

    Article  Google Scholar 

  23. Long JB, Bentley TL, Wessner KA, Cerone C, Sweeney S, Bauman RA. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma. 2009;26:827–40.

    Article  Google Scholar 

  24. Sosa MA, De Gasperi R, Paulino AJ, Pricop PE, Shaughness MC, Maudlin-Jeronimo E, et al. Blast overpressure induces shear-related injuries in the brain of rats exposed to a mild traumatic brain injury. Acta Neuropathol Commun. 2013;1:51.

    Article  Google Scholar 

  25. Chavko M, Watanabe T, Adeeb S, Lankasky J, Ahlers ST, McCarron RM. Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods. 2011;195:61–6.

    Article  Google Scholar 

  26. Sinclair MD. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J. 2003;44:885–97.

    CAS  Google Scholar 

  27. Wang C, Liu F, Patterson TA, Paule MG, Slikker W Jr. Preclinical assessment of ketamine. CNS Neurosci Ther. 2013;19:448–53.

    Article  CAS  Google Scholar 

  28. Turner RC, Naser ZJ, Logsdon AF, DiPasquale KH, Jackson GJ, Robson MJ, et al. Modeling clinically relevant blast parameters based on scaling principles produces functional & histological deficits in rats. Exp Neurol. 2013;248:520–9.

    Article  Google Scholar 

  29. Gullotti DM, Beamer M, Panzer MB, Chen YC, Patel TP, Yu A, et al. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury. J Biomech Eng. 2014;136:091004.

    Article  Google Scholar 

  30. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60.

    Article  Google Scholar 

  31. Budde MD, Shah A, McCrea M, Cullinan WE, Pintar FA, Stemper BD. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front Neurol. 2013;4:154.

    Article  Google Scholar 

  32. Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, et al. Increase in blood-brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res. 2010;88:3530–9.

    Article  CAS  Google Scholar 

  33. Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, et al. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29:2564–75.

    Article  Google Scholar 

  34. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68:709–35.

    Article  Google Scholar 

  35. Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms. NeuroImage. 2011;54:S76–82.

    Article  Google Scholar 

  36. Calabrese E, Du F, Garman RH, Johnson GA, Riccio C, Tong LC, et al. Diffusion tensor imaging reveals white matter injury in a rat model of repetitive blast-induced traumatic brain injury. J Neurotrauma. 2014;31:938–50.

    Article  Google Scholar 

  37. Kovacs SK, Leonessa F, Ling GS. Blast TBI models, neuropathology, and implications for seizure risk. Front Neurol. 2014;5:47.

    Article  Google Scholar 

  38. Kamnaksh A, Kovesdi E, Kwon SK, Wingo D, Ahmed F, Grunberg NE, et al. Factors affecting blast traumatic brain injury. J Neurotrauma. 2011;28:2145–53.

    Article  Google Scholar 

  39. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14:128–42.

    Article  CAS  Google Scholar 

  40. Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7:728–41.

    Article  Google Scholar 

  41. Hicks RR, Fertig SJ, Desrocher RE, Koroshetz WJ, Pancrazio JJ. Neurological effects of blast injury. J Trauma. 2010;68:1257–63.

    Google Scholar 

  42. Chen YC, Smith DH, Meaney DF. In-vitro approaches for studying blast-induced traumatic brain injury. J Neurotrauma. 2009;26:861–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Dickinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pires, R.C., Dickinson, R. (2022). Modelling Blast Brain Injury. In: Bull, A.M.J., Clasper, J., Mahoney, P.F. (eds) Blast Injury Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-10355-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10355-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10354-4

  • Online ISBN: 978-3-031-10355-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics