Skip to main content

Advertisement

Log in

Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Upon impingement of blast waves on the head, stress waves generated at the interface of the skull are transferred into the cranium and the brain tissue and may cause mild to severe blast traumatic brain injury. The intensity of the shock front, defined by the blast overpressure (BoP), that is, the blast-induced peak static overpressure, significantly affects head kinematics as well as the tissue responses of the brain. While evaluation of global linear and rotational accelerations may be feasible, an experimental determination of dynamic responses of the brain in terms of intracranial pressure (ICP), maximum shear stress (MSS), and maximum principal strain (MPS) is almost impossible. The main objective of this study is to investigate possible correlations between head accelerations and the brain’s ICP, MSS, and MPS. To this end, three different blasts were simulated by modeling the detonation of 70, 200, and 500 g of TNT at a fixed distance from the head, corresponding to peak BoPs of 0.52, 1.2, and 2 MPa, respectively. A nonlinear multi-material finite element algorithm was implemented in the LS-DYNA explicit solver. Fluid–solid interaction between the blast waves and head was modeled using a penalty-based method. Strong correlations were found between the brain’s dynamic responses and both global linear and rotational accelerations at different blast intensities (\(R^{2 }\ge \) 98%), implying that global kinematic parameters of the head might be strong predictors of brain tissue biomechanical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chafi, M., Karami, G., Ziejewski, M.: Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38(2), 490–504 (2010). doi:10.1007/s10439-009-9813-z

    Article  Google Scholar 

  2. Taylor, P.A., Ludwigsen, J.S., Ford, C.C.: Investigation of blast-induced traumatic brain injury. Brain Inj. 28(7), 879–895 (2014). doi:10.3109/02699052.2014.888478

    Article  Google Scholar 

  3. Sarvghad-Moghaddam, H., Rezaei, A., Karami, G., Ziejewski, M.: Computational investigation of brain neurotrauma biomechanics under blast. J. Neurotrauma 31(12), A123–A123 (2014)

    Google Scholar 

  4. Mao, H., Zhang, L., Yang, K.H., King, A.I.: Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J. 50, 583–600 (2006)

    Google Scholar 

  5. Moss, W.C., King, M.J., Blackman, E.G.: Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103(10), 108702 (2009). doi:10.1103/PhysRevLett.103.108702

    Article  Google Scholar 

  6. Sarvghad-Moghaddam, H., Rezaei, A., Ziejewski, M., Karami, G.: Evaluation of brain tissue responses due to the underwash overpressure of helmet and faceshield under blast loading. Int. J. Numer. Methods Biomed. Eng. e02782 (2016). doi:10.1002/cnm.2782

  7. Panzer, M.B., Myers, B.S., Capehart, B.P., Bass, C.R.: Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40(7), 1530–1544 (2012). doi:10.1007/s10439-012-0519-2

    Article  Google Scholar 

  8. Shridharani, J., Wood, G.W., Panzer, M.B., Capehart, B.P., Nyein, M., Radovitzky, R.A., Bass, C.R.D.: Porcine head response to blast. Front. Neurol. 3, 70 (2012). doi:10.3389/fneur.2012.00070

    Article  Google Scholar 

  9. Mao, H., Unnikrishnan, G., Rakesh, V., Reifman, J.: Untangling the effect of head acceleration on brain responses to blast waves. J. Biomech. Eng. 137(12), 124502 (2015). doi:10.1115/1.4031765

    Article  Google Scholar 

  10. Chandra, N., Ganpule, S., Kleinschmit, N.N., Feng, R., Holmberg, A.D., Sundaramurthy, A., Selvan, V., Alai, A.: Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves 22(5), 403–415 (2012). doi:10.1007/s00193-012-0399-2

    Article  Google Scholar 

  11. King, A.I., Yang, K.H., Zhang, L., Hardy, W., Viano, D.C.: Is head injury caused by linear or angular acceleration. In: IRCOBI Conference, pp. 1–12 (2003)

  12. Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2), 226–236 (2004). doi:10.1115/1.1691446

    Article  Google Scholar 

  13. Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(4), 353–366 (2003). doi:10.1533/ijcr.2003.0243

    Article  Google Scholar 

  14. Sarvghad-Moghaddam, H., Jazi, M.S., Rezaei, A., Karami, G., Ziejewski, M.: Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves. Comput. Methods Biomech. Biomed. Eng. 18(16), 1846–1855 (2015). doi:10.1080/10255842.2014.977878

    Article  Google Scholar 

  15. Chafi, M.S.: Biomechanical analysis of blast-induced traumatic brain injury using multiscale brain modeling. PhD Thesis, North Dakota State University (2009)

  16. Nahum, A.M., Smith, R.: Intracranial pressure dynamics during head impact. Paper presented at: proceedings of 21st stapp car crash conference, New Orleans, LA, USA. SAE paper no. 770922. Society of Automotive Engineering, Warrendale, PA (1977). doi:10.4271/770922

  17. HyperMesh, A.: 11.0. Altair Engineering. Inc., Troy, MI, USA

  18. Sarvghad-Moghaddam, H.: Computational biomechanics of blast-induced traumatic brain injury: role of loading directionality, head protection, and blast flow mechanics. PhD Thesis, North Dakota State University (2015)

  19. Zhang, L., Makwana, R., Sharma, S.: Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 4, 88 (2013). doi:10.3389/fneur.2013.00088

    Article  Google Scholar 

  20. Mendis, K., Stalnaker, R., Advani, S.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. 117(3), 279–285 (1995). doi:10.1115/1.2794182

    Article  Google Scholar 

  21. Sarvghad-Moghaddam, H., Karami, G., Ziejewski, M.: Examination of the blast-induced underwash effect on a helmeted head and the response of the brain. Paper presented at the 17th U.S. National Congress on Theoretical and Applied Mechanics, Michigan State University, East Lansing, MI, June 2014

  22. Hallquist, J.O.: LS-DYNA Keyword User’s Manual, vol. 970. Livermore Software Technology Corporation, Livermore (2007)

    Google Scholar 

  23. Sarvghad-Moghaddam, H., Rezaei, A., Ziejewski, M., Karami, G.: A comparative study on the protection efficiency of combat helmets against ballistic impacts and blast waves. J. Head Trauma Rehabil. 30(3), 66 (2015)

  24. Sarvghad-Moghaddam, H., Rezaei, A., Ziejewski, M., Karami, G.: The influence of directionality on correlating kinematical severity to tissue level injury of the human head. J. Head Trauma Rehabil. 3, E67 (2015)

    Google Scholar 

  25. Salimi Jazi, M., Rezaei, A., Azarmi, F., Ziejewski, M., Karami, G.: Computational biomechanics of human brain with and without the inclusion of the body under different blast orientation. Comput. Methods Biomech. Biomed. Eng. 19(9), 1019–31 (2016). doi:10.1080/10255842.2015.1088525

    Article  Google Scholar 

  26. Post, A., Oeur, A., Hoshizaki, B., Gilchrist, M.D.: Examination of the relationship between peak linear and angular accelerations to brain deformation metrics in hockey helmet impacts. Comput. Methods Biomech. Biomed. Eng. 16(5), 511–519 (2013). doi:10.1080/10255842.2011.627559

    Article  Google Scholar 

  27. Sabet, A.A., Christoforou, E., Zatlin, B., Genin, G.M., Bayly, P.V.: Deformation of the human brain induced by mild angular head acceleration. J. Biomech. 41(2), 307–315 (2008). doi:10.1016/j.jbiomech.2007.09.016

    Article  Google Scholar 

  28. Hernandez, F., Shull, P.B., Camarillo, D.B.: Evaluation of a laboratory model of human head impact biomechanics. J. Biomech. 48(12), 3469–3477 (2015). doi:10.1016/j.jbiomech.2015.05.034

    Article  Google Scholar 

  29. Leonardi, A.D.C., Bir, C.A., Ritzel, D.V., VandeVord, P.J.: Intracranial pressure increases during exposure to a shock wave. J. Neurotrauma 28(1), 85–94 (2011). doi:10.1089/neu.2010.1324

    Article  Google Scholar 

  30. Sarvghad-Moghaddam, H., Karami, G., Ziejewski, M.: The effects of directionality of blunt impacts on mechanical response of the brain. In: ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Canada, November 2014, p. 3–13. American Society of Mechanical Engineers (2014). doi:10.1115/IMECE2014-39338

  31. Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1), 21–30 (2004). doi:10.1089/089771501750055749

    Article  Google Scholar 

  32. Ganpule, S., Alai, A., Plougonven, E., Chandra, N.: Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech. Model. Mechanobiol. 12(3), 511–531 (2013). doi:10.1007/s10237-012-0421-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sarvghad-Moghaddam.

Additional information

Communicated by O. Petel and S. Ouellet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvghad-Moghaddam, H., Rezaei, A., Ziejewski, M. et al. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI. Shock Waves 27, 919–927 (2017). https://doi.org/10.1007/s00193-017-0749-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0749-1

Keywords

Navigation