Skip to main content

Advertisement

Log in

Tandem shock waves in medicine and biology: a review of potential applications and successes

  • Review
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Shock waves have been established as a safe and effective treatment for a wide range of diseases. Research groups worldwide are working on improving shock wave technology and developing new applications of shock waves to medicine and biology. The passage of a shock wave through soft tissue, fluids, and suspensions containing cells may result in acoustic cavitation i.e., the expansion and violent collapse of microbubbles, which generates secondary shock waves and the emission of microjets of fluid. Cavitation has been recognized as a significant phenomenon that produces both desirable and undesirable biomedical effects. Several studies have shown that cavitation can be controlled by emitting two shock waves that can be delayed by tenths or hundreds of microseconds. These dual-pulse pressure pulses, which are known as tandem shock waves, have been shown to enhance in vitro and in vivo urinary stone fragmentation, cause significant cytotoxic effects in tumor cells, delay tumor growth, enhance the bactericidal effect of shock waves and significantly increase the efficiency of genetic transformations in bacteria and fungi. This article provides an overview of the basic physical principles, methodologies, achievements and potential uses of tandem shock waves to improve biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chaussy, C.G., Fuchs, G.J.: Current state and future-developments of noninvasive treatment of human urinary stones with extracorporeal shockwave lithotripsy. J. Urol. 141, 782–789 (1989)

    Google Scholar 

  2. Lingeman, J.E.: Extracorporeal shock wave lithotripsy devices: are we making progress? In: Lingeman, J.E., Preminger, G.M. (eds.) Topics Clinical Urology, pp. 79–96. Igaku-Shoin Medical Publishers, New York (1996)

    Google Scholar 

  3. Lingeman, J.E., McAteer, J.A., Gnessin, E., Evan, A.P.: Shock wave lithotripsy: advances in technology and technique. Nat. Rev. Urol. 6, 660–670 (2009)

    Article  Google Scholar 

  4. Montag, S., Andonian, S., Smith, A.D.: Extracorporeal shock wave lithotripsy: What is its current role in treating nephrolithiasis? What is the evidence for its long term complications? In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 2. Research Signpost, Kerala, India (2011). ISBN 978-81-308-0387-6

  5. Sauerbruch, T., Holl, J., Sackmann, M., Werner, R., Wotzka, R., Paumgartner, G.: Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with chronic pancreatitis. Endoscopy 19, 207–208 (1987)

    Article  Google Scholar 

  6. Sackmann, M., Delius, M., Sauerbruch, T., Holl, J., Weber, W., Ippisch, E., Hagelauer, U., Wess, O., Hepp, W., Brendel, W.: Shock-wave lithotripsy of gallbladder stones. The first 175 patients. N Engl. J. Med. 318, 393–397 (1988)

    Article  Google Scholar 

  7. Iro, H., Fodra, C., Waitz, G., Nitsche, N., Heinritz, H.H., Schneider, H.T., Benninger, J., Ell, C.: Shockwave lithotripsy of salivary duct stones. Lancet 339, 1333–1336 (1992)

    Article  Google Scholar 

  8. Meiser, G., Heinerman, M., Lexer, G., Boeckl, O.: Aggressive extracorporeal shock wave lithotripsy of gall bladder stones within wider treatment criteria: fragmentation rate and early results. Gut 33, 277–281 (1992)

    Article  Google Scholar 

  9. Ottaviani, F., Capaccio, P., Campi, M., Ottaviani, A.: Extracorporeal electromagnetic shock-wave lithotripsy for salivary gland stones. Laryngoscope 106, 761–764 (1996)

    Article  Google Scholar 

  10. Rubenstein, J.N., Parsons, W.G., Kim, S.C., Weiser, A.C., Loor, M.M., Kube, D.S., Nadler, R.B.: Extracorporeal shock wave lithotripsy of pancreatic duct stones using the Healthtronics LithoTron lithotriptor and the Dornier HM3 lithotripsy machine. J. Urol. 167, 485–487 (2002)

    Article  Google Scholar 

  11. Escudier, M.P., Brown, J.E., Putcha, V., Capaccio, P., McGurk, M.: Factors influencing the outcome of extracorporeal shock wave lithotripsy in the management of salivary calculi. Laryngoscope 120, 1545–1549 (2010)

    Article  Google Scholar 

  12. McAteer, J.A., Bailey, M.R., Williams, J.C., Cleveland, R.O., Evan, A.P.: Strategies for improved shock wave lithotripsy. Minerva. Urol. Nefrol. 57, 271–287 (2005)

    Google Scholar 

  13. Loske, A.M.: Shock Wave Physics for Urologists. CFATA-Universidad Nacional Autónoma de México, Querétaro, México (2007). ISBN 978-970-32-4377-8

  14. McAteer, J.A., Evan, A.P., Williams, J.C., Lingeman, J.E.: Treatment protocols to reduce renal injury during shock wave lithotripsy. Curr. Opin. Urol. 19, 192–195 (2009)

    Article  Google Scholar 

  15. Bergsdorf, T., Chaussy, C.G.: New trends in shock wave application regarding technology and treatment strategy. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 1. Research Signpost, Kerala, India (2011). ISBN 978-81-308-0387-6

  16. Tailly, G.G.: Introduction to lithotripter technology. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 3. Research Signpost, Kerala, India (2011). ISBN 978-81-308-0387-6

  17. Takayama, K., Saito, T.: Shockwave/geophysical and medical applications. Annu. Rev. Fluid. Mech. 36, 347–379 (2004)

    Article  Google Scholar 

  18. Haupt, G., Haupt, A., Ekkernkamp, A., Gerety, B., Chvapil, M.: Influence of shock waves on fracture healing. Urology 39, 529–532 (1992)

    Article  Google Scholar 

  19. Haupt, G.: Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J. Urol. 158, 4–11 (1997)

    Article  Google Scholar 

  20. Rompe, J.D., Burger, R., Hopf, C., Eysel, P.: Shoulder function after extracorporeal shock wave therapy for calcific tendinitis. J. Shoulder. Elb. Surg. 7, 505–509 (1998)

    Article  Google Scholar 

  21. Siebert, W., Buch, M.: Extracorporeal shock wave in orthopaedics. Springer Verlag, Heidelberg (1997)

    Google Scholar 

  22. Orhan, Z., Alper, M., Akman, Y., Yavuz, O., Yalciner, A.: An experimental study on the application of extracorporeal shock waves in the treatment of tendon injuries: Preliminary report. J. Orthop. Sci. 6, 566–570 (2001)

    Article  Google Scholar 

  23. Rompe, J.D., Decking, J., Schoellner, C., Nafe, B.: Shock wave application for chronic plantar fascitis in running athletes: a prospective, randomized, placebo-controlled trial. Am. J. Sport. Med. 31, 268–275 (2003)

    Google Scholar 

  24. El-Husseiny, T., Papatsoris, A., Masood, J., Maan, Z., Buchholz, N.: The use of extracorporeal shock wave therapy in orthopedics. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 9. Research Signpost, Kerala (2011). ISBN 978-81-308-0387-6

  25. Manganotti, P., Amelio, E.: Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. Stroke 36, 1967–1971 (2005)

    Article  Google Scholar 

  26. Fukumoto, Y., Ito, A., Uwatoku, T., Matoba, T., Kishi, T., Tanaka, H., Takeshita, A., Sunagawa, K., Shimokawa, H.: Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coronary Artery Dis. 17, 63–70 (2006)

    Article  Google Scholar 

  27. Shimokawa, H., Ito, K.: Extracorporeal cardiac shock wave therapy for ischemic heart disease. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 12. Research Signpost, Kerala (2011). ISBN 978-81-308-0387-6

  28. Ito, K., Fukumoto, Y., Shimokawa, H.: Extracorporeal shock wave therapy for ischemic cardiovascular disorders. Am. J. Cardiovasc. Drug. 11, 295–302 (2011)

    Article  Google Scholar 

  29. Wang, Y., Guo, T., Ma, T.K., Cai, H.Y., Tao, S.M., Peng, Y., Yang, P., Chen, M.Q., Gu, Y.: A modified regimen of extracorporeal cardiac shock wave therapy for treatment of coronary artery disease. Cardiovasc. Ultrasoun. 17, 10–35 (2012)

    Google Scholar 

  30. Vardi, Y., Appel, B., Kilchevsky, A., Gruenwald, I.: Does low intensity extracorporeal shock wave therapy have a physiological effect on erectile function? Short-term results of a randomized, double-blind, sham controlled study. J. Urol. 187, 1769–1775 (2012)

    Article  Google Scholar 

  31. Hauck, W., Altinkilic, B.M., Ludwig, M., Lüdecke, G., Schroeder-Printzen, I., Arens, C., Weidner, W.: Extracorporal shock wave therapy in the treatment of Peyronie’s disease. Eur. Urol. 38, 663–670 (2000)

    Article  Google Scholar 

  32. Manikandana, R., Islama, W., Srinivasana, V., Evansa, C.M.: Evaluation of extracorporeal shock wave therapy in Peyronie’s disease. Urology 60, 795–799 (2002)

    Article  Google Scholar 

  33. Skolarikos, A., Alargof, E., Rigas, A., Deliveliotis, C., Konstantinidis, E.: Shockwave therapy as first-line treatment for Peyronie’s disease: a prospective study. J. Endourol. 19, 11–14 (2005)

    Article  Google Scholar 

  34. El-Husseiny, T., Papatsoris, A., Masood, J., Maan, Z., Buchholz, N.: The use of extracorporeal shock wave therapy in the treatment of Peyronie’s disease. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 11. Research Signpost, Kerala (2011). ISBN 978-81-308-0387-6

  35. Zimmermann, R., Janetschek, G.: Extracorporeal shock wave therapy for treatment of chronic pelvic pain syndrome. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, chapter 10. Research Signpost, Kerala (2011). ISBN 978-81-308-0387-6

  36. Russo, P., Stephenson, R.A., Mies, C., Huryk, R., Heston, W.D., Melamed, M.R., Fair, W.R.: High energy shock waves suppress tumor growth in vitro and in vivo. J. Urol. 135, 626–628 (1986)

    Google Scholar 

  37. Russo, P., Mies, C., Huryk, R., Heston, W.D., Fair, W.R.: Histopathologic and ultrastructural correlates of tumor growth suppression by high energy shock waves. J. Urol. 137, 338–341 (1987)

    Google Scholar 

  38. Hoshi, S., Orikasa, S., Kuwahara, M., Suzuki, K., Yoshikawa, K., Saitoh, S., Ohyama, C., Satoh, M., Kawamura, S., Nose, M.: High energy underwater shock wave treatment on implanted urinary bladder cancer in rabbits. J. Urol. 146, 439–443 (1991)

    Google Scholar 

  39. Brümmer, F., Suhr, D., Hülser, F.: Sensitivity of normal and malignant cells to shock waves. J. Lithotr. Stone Dis. 4, 243–248 (1992)

    Google Scholar 

  40. Steinbach, P., Hofstädter, H., Nicolai, H., Rössler, W., Wieland, W.: In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med. Biol. 18, 691–699 (1992)

    Article  Google Scholar 

  41. Oosterhof, G.O.N., Cornel, E.B., Smits, G.A.H.J., Debruyne, F.M., Schalken, J.A.: The influence of high-energy shock waves on the development of metastases. Ultrasound Med. Biol. 22, 339–344 (1996)

    Article  Google Scholar 

  42. Lauer, U., Bürgelt, E., Squire, Z., Messmer, K., Hofschneider, P.H., Gregor, M., Delius, M.: Shock wave permeabilization as a new gene transfer method. Gene Ther. 4, 710–715 (1997)

    Article  Google Scholar 

  43. Bao, S., Thrall, B.D., Gies, R.A., Miller, D.L.: In transfection of melanoma cells by lithotripter shock waves. Cancer Res. 58, 219–221 (1998)

    Google Scholar 

  44. Kodama, T., Hamblin, M.R., Doukas, A.G.: Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys. J. 79, 1821–1832 (2000)

    Article  Google Scholar 

  45. Miller, D.L., Song, J.: Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound Med. Biol. 28, 1343–1348 (2002)

    Article  Google Scholar 

  46. Armenta, E., Varela, A., Martínez de la Escalera, G., Loske, A.M.: Transfección de células por medio de ondas de choque (Cell transfection using shock waves). Rev. Mex. Fis. 52, 352–358 (2006)

    Google Scholar 

  47. Bekeredjian, R., Bohris, C., Hansen, A., Katus, H.A., Kuecherer, H.F., Hardt, S.E.: Impact of microbubbles on shock wave-mediated DNA uptake in cells in vitro. Ultrasound Med. Biol. 5, 743–750 (2007)

    Article  Google Scholar 

  48. Murata, R., Nakagawa, K., Ohtori, S., Ochiai, N., Arai, M., Saisu, T., Sasho, T., Takahashi, K., Moriya, H.: The effects of radial shock waves on gene transfer in rabbit chondrocytes in vitro. Osteoarthr. Cartil. 15, 1275–1282 (2007)

    Article  Google Scholar 

  49. Loske, A.M., Campos-Guillen, J., Fernández, F., Castaño-Tostado, E.: Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med. Biol. 37, 502–510 (2011)

    Article  Google Scholar 

  50. Mastikhin, I.V., Teslenko, V.S., Nikolin, V.P., Kolosova, N.G., Gorchakov, V.N.: Tumor growth inhibition by combined action of shock waves and cytostatics. In: Loske, A.M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, pp. 151–164. Research Signpost, Kerala (2010) ISBN: 978-81-308-0387-6

  51. Loske, A.M., Prieto, F.E., Zavala, M.L., Santana, A.D., Armenta, E.: Repeated application of shock waves as a possible method for food preservation. Shock Waves 9, 49–55 (1999)

    Article  Google Scholar 

  52. Loske, A.M., Alvarez, U.M., Hernández-Galicia, C., Castaño-Tostado, E., Prieto, F.E.: Bactericidal effect of underwater shock waves on Escherichia coli ATCC 10536 suspensions. Innov. Food Sci. Emerg. 3, 321–327 (2002)

    Article  Google Scholar 

  53. Alvarez, U.M., Loske, A.M., Castaño-Tostado, E., Prieto, F.E.: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes by underwater shock waves. Innov. Food Sci. Emerg. 5, 459–463 (2004)

    Article  Google Scholar 

  54. Tsukamoto, I., Yim, B., Stavarache, C.E., Furuta, M., Hashiba, K., Maeda, Y.: Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrason. Sonochem. 11, 57–60 (2004)

    Article  Google Scholar 

  55. Gerdesmeyer, L., von Eiff, Ch., Horn, C., Henne, M., Roessner, M., Diehl, P., Gollwitzer, H.: Antibacterial effects of extracorporeal shock waves. Ultrasound Med. Biol. 31, 115–119 (2005)

    Article  Google Scholar 

  56. Sharma, M., Shearer, A.E.H., Hoover, D.G., Liu, M.N., Solomon, M.B., Kniel, K.E.: Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses. Innov. Food Sci. Emerg. 9, 418–422 (2008)

    Article  Google Scholar 

  57. Tamagawa, M., Yamano, I., Matsumoto, A.: Fundamental investigation for developing drug delivery systems and bioprocess with shock waves and bubbles. JSME. Int. J. C-Mech. Sy. 44, 1031–1040 (2001)

    Article  Google Scholar 

  58. Jagadeesh, G., Takayama, K.: Novel applications of micro-shock waves in biological sciences. J. Indian I. Sci. 82, 1–10 (2002)

    Google Scholar 

  59. Hosseini, S.H.R., Menezes, V., Moosavi-Nejad, S., Ohki, T., Nakagawa, A., Tominaga, T., Takayama, K.: Development of shock wave assisted therapeutic devices and establishment of shock wave therapy. Minim. Invasive Ther. 15, 230–240 (2006)

    Article  Google Scholar 

  60. Jagadeesh, G., Prakash, D., Rakesh, S.G., Sankar Allam, U., Gopala Krishna, M., Eswarappa, S.M., Chakravortty, D.: Needleless vaccine delivery using micro-shock waves. Clin. Vaccin. Immunol. 18, 539–545 (2011)

    Article  Google Scholar 

  61. Rakesh, S.G., Gnanadhas, D.P., Allam, U.S., Nataraja, K.N., Barhai, P.K., Jagadeesh, G., Chakravortty, D.: Development of micro-shock wave assisted dry particle and fluid jet delivery system. Appl. Microbiol. Biot. 96, 647–662 (2012)

    Article  Google Scholar 

  62. Magaña-Ortíz, D., Coconi-Linares, N., Ortiz-Vazquez, E., Fernández, F., Loske, A.M., Gómez-Lim, M.A.: A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet. Biol. 56, 9–16 (2013)

    Article  Google Scholar 

  63. Loske, A.M.: The role of energy density and acoustic cavitation in shock wave lithotripsy. Ultrasonics 50, 300–305 (2010)

    Article  Google Scholar 

  64. Crum, L.A.: Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J. Urol. 140, 1587–1590 (1988)

    Google Scholar 

  65. Bailey, M.R., Pishchalnikov, Y.A., Sapozhnikov, O.A., Cleveland, R.O., McAteer, J.A., Miller, N.A., Pishchalnikova, I.V., Connors, B.A., Crum, L.A., Evan, A.P.: Cavitation detection during shock-wave lithotripsy. Ultrasound Med. Biol. 31, 1245–1256 (2005)

    Article  Google Scholar 

  66. Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shock wave lithotripsy. J. Acoust. Soc. Am. 124, 2011–2020 (2008)

    Article  Google Scholar 

  67. Kreider, W., Crum, L.A., Bailey, M.R., Sapozhnikov, O.A.: Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles. J. Acoust. Soc. Am. 130, 3531–3540 (2011)

    Article  Google Scholar 

  68. Ohl, S.D., Ikink, R.: Shock-wave-induced jetting of micron-size bubble. Phys. Rev. Lett. 90, 214502.1–214502.4 (2003)

    Article  Google Scholar 

  69. Brujan, E.A., Ikeda, T., Matsumoto, Y.: On the pressure of cavitation bubbles. Exp. Therm. Fluid Sci. 32, 1188–1191 (2008)

    Article  Google Scholar 

  70. Church, C.C.: A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust. Soc. Am. 86, 215–227 (1989)

    Article  Google Scholar 

  71. Carstensen, E.L., Gracewski, S., Daleki, D.: The search for cavitation in vivo. Ultrasound Med. Biol. 26, 1377–1385 (2000)

    Article  Google Scholar 

  72. Zhong, P., Zhou, Y., Zhu, S.: Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med. Biol. 27, 119–134 (2001)

    Article  Google Scholar 

  73. Loske, A.M., Prieto, F.E.: Improving underwater shock wave focusing efficiency. In: Charles, Y., Pak, C., Resnick, M.I., Preminger, G.M. (eds.) Urolithiasis, pp. 401–402. Millet Printer Inc, Dallas (1996)

    Google Scholar 

  74. Zhong, P., Cocks, F.R., Cioanta, I., Preminger, G.M.: Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shockwave lithotripsy. J. Urol. 158, 2323–2328 (1997)

    Article  Google Scholar 

  75. Bailey, M.R., Cleveland, R.O., Blackstock, D.T., Crum, L.A.: Use of two pulses to control cavitation in lithotripsy. J. Acoust. Soc. Am. 103, 3072–3072 (1998)

    Article  Google Scholar 

  76. Loske, A.M., Prieto, F.E.: First in vitro experiments using a new reflector to concentrate shock waves for ESWL. In: Kuhl, P.K., Crum, L.A. (eds.) Proceedings of the 16\(^{{\rm th}}\) International Congress on Acoustics and the 135\(^{{\rm th}}\) Meeting of the Acoustical Society of America, pp. 2805–2806 (1998)

  77. Prieto, F.E., Loske, A.M.: Bifocal reflector for electrohydraulic lithotripters. J. Endourol. 13, 65–75 (1999)

    Article  Google Scholar 

  78. Zhou, Y., Cocks, F.R., Prerninger, G.M., Zhong, P.: Innovations in shock wave lithotripsy technology: update in experimental studies. J. Urol. 172, 1892–1898 (2004)

    Article  Google Scholar 

  79. Canseco, G., de Icaza-Herrera, M., Fernández, F., Loske, A.M.: Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Ultrasonics 51, 803–810 (2011)

    Article  Google Scholar 

  80. Steiger, E., Uebelacker, W.: Laser induced shock waves for medical applications. LASER Optoelectronics in Medicine, pp 369–374 (1988) ISBN: 978-3-540-18130-9

  81. Tominaga, T., Nakagawa, A., Hirano, T., Sato, J., Kato, K., Hosseini, S.H.R., Takayama, K.: Application of underwater shock wave and laser-induced liquid jet to neurosurgery. Shock. Wave. 15, 55–67 (2006)

    Article  Google Scholar 

  82. Takayama, K.: Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy. Jpn. J. Appl. Phys. 32, 2192–2198 (1993)

    Article  Google Scholar 

  83. Hosseini, S.H.R., Kaiho, K., Takayama, K.: Response of ocean bottom dwellers exposed to underwater shock waves. Shock. Wave. 19, 1–6 (2009)

    Article  Google Scholar 

  84. Loske, A.M., Prieto, F.E., Fernández, F., van Cauwelaert, J.: Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys. Med. Biol. 47, 3945–3957 (2002)

    Article  Google Scholar 

  85. Fernández, F., Loske, A.M., Zendejas, H., Castaño, E., Paredes, M.: Desarrollo de un litotriptor extracorporal más eficiente. Rev. Mex. Ing. Biomed. 21, 7–15 (2005)

    Google Scholar 

  86. Ginter, S., Krauss, W.: Wolf-innovative piezoelectric shock wave systems: Piezolith 3000 and Piezoson 100 plus. In: Chaussy, C., Jocham, G., Köhrmann, K.U., Wilbert, D. (eds.) Therapeutic energy applications in urology: standard and recent developments, pp. 175–177. Georg Thieme Verlag KG, Stuttgart (2005)

    Google Scholar 

  87. Cleveland, R.O., McAteer, J.A.: The physics of shock wave lithotripsy. In: Smith, A.D., Badlani, G.H., Bagley, D.H., Clayman, R.V., Docimo, S.G., Jordan, G.H., Kavoussi, Lee, B.R., Lingeman, J.E., Preminger, G.M., Segura, J.W. (eds.) Smith’s Textbook on Endourology, pp. 317–332. BC Decker Inc., Hamilton (2007)

    Google Scholar 

  88. Lingeman, J.E.: Lithotripsy systems. In: Smith, A.D., Badlani, G.H., Bagley, D.H., Clayman, R.V., Docimo, S.G., Jordan, G.H., Kavoussi, L.R., Lee, B.R., Lingeman, J.E., Preminger, G.M., Segura, J.W. (eds.) Smith’s Textbook on Endourology, pp. 333–342. BC Decker Inc, Hamilton (2007)

    Google Scholar 

  89. Prieto, F.E., Loske, A.M., Yarger, F.L.: An underwater shock wave research device. Rev. Sci. Instrum. 62, 1849–1854 (1991)

    Article  Google Scholar 

  90. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Effect of dual-reflector lithotripsy on stone fragmentation and cell damage. J. Acoust. Soc. Am. 108, 2518–2518 (2000)

    Article  Google Scholar 

  91. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J. Acoust. Soc. Am. 110, 1685–1695 (2001)

    Article  Google Scholar 

  92. Sheir, K.Z., El-Sheikh, A.M., Ghoneim, M.A.: Synchronous twin-pulse technique to improve efficacy of SWL: preliminary results of an experimental study. J. Endourol. 15, 965–974 (2001)

    Article  Google Scholar 

  93. Greenstein, A., Sofer, M., Matzkin, H.: Efficacy of the Duet lithotripter using two energy sources for stone fragmentation by shock waves: an in vitro study. J. Endourol. 18, 942–945 (2004)

  94. Sunka, P., Stelmashuk, V., Babicky, V., Clupek, M., Benes, J., Pouckova, P., Kaspar, J., Bodnar, M.: Generation of two successive shock waves focused to a common focal point. IEEE T. Plasma Sci. 34, 1382–1385 (2006)

    Article  Google Scholar 

  95. Stelmashuk, V., Sunka, P.: Mutual interaction of two shock waves with a different time delay. Czech. J. Phys. 56, B396–B400 (2006)

    Article  Google Scholar 

  96. Lukes, P., Sunka, P., Hoffer, P., Stelmashuk, V., Benes, J., Pouckova, P., Zadinova, M., Zeman, J.: Generation of focused shock waves in water for biomedical applications. In: Machala, Z., Hensel, K., Y. Akishev (eds.) Plasma for Bio-Decontamination, Medicine and Food Security, NATO Science for Peace and Security Series A: Chemistry and Biology, pp. 403–416. Springer Verlag, Dordrecht (2012) ISBN 978-94-007-2851-6

  97. Lukes, P., Sunka, P., Hoffer, P., Stelmashuk, V., Pouckova, P., Zadinova, M., Zeman, J., Dibdiak, L., Kolarova, H., Tomankova, K., Binder, S., Benes, J.: Focused tandem shock waves in water and their potential application in cancer treatment. Shock. Wave. 24, 51–57 (2014)

    Article  Google Scholar 

  98. Sunka, P., Babicky, V., Clupek, M., Lukes, P., Simek, M., Schmidt, J., Cernak, M.: Generation of chemically active species by electrical discharges in water. Plasma Sour. Sci. T. 8, 258–265 (1999)

    Article  Google Scholar 

  99. Sunka, P.: Pulse electrical discharges in water and their applications. Phys. Plasmas 8, 2587–2594 (2001)

    Article  Google Scholar 

  100. Lukes, P., Clupek, M., Babicky, V., Sunka, P.: Pulsed electrical discharge in water generated using porous ceramic coated electrodes. IEEE T. Plasma Sci. 36, 1146–1147 (2008)

    Article  Google Scholar 

  101. Stelmashuk, V., Hoffer, P.: Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities. IEEE T. Plasma Sci. 40, 1907–1912 (2012)

    Article  Google Scholar 

  102. Sunka, P., Babicky, V., Clupek, M., Benes, J., Pouckova, P.: Localized damage of tissues induced by focused shock waves. IEEE T. Plasma. Sci. 32, 1609–1613 (2004)

    Article  Google Scholar 

  103. Sunka, P., Babicky, V., Clupek, M., Fuciman, M., Lukes, P., Simek, M., Benes, J., Majcherova, Z., Locke, B.R.: Potential applications of pulse electrical discharges in water. Acta. Phys. Slovaca 54, 135–145 (2004)

    Google Scholar 

  104. Lukes, P., Sunka, P., Hoffer, P., Stelmashuk, V., Benes, J., Pouckova, P., Zadinova, M., Zeman, J., Dibdiak, L., Kolarova, H., Tomankova, K., Binder, S.: Focused tandem shock waves in water and their potential application in cancer treatment. In: Kontis, K. (ed.) Proceedings of the 28\({\rm th}\) International Symposium on Shock Waves, Shock Waves, Springer Verlag, pp. 839–845 (2012)

  105. Lukes, P., Zeman, J., Horak, V., Hoffer, P., Pouckova, P., Holubova, M., Hosseini, S.H.R., Akiyama, H., Sunka, P., Benes, J.: In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques. Bioelectrochemistry 103, 103–110 (2015)

    Article  Google Scholar 

  106. Xi, X.F., Zhong, P.: Improvement of stone fragmentation during shock wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Ultrasound Med. Biol. 26, 457–467 (2000)

    Article  Google Scholar 

  107. Zhong, P., Zhou, Y.: Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. J. Acoust. Soc. Am. 110, 3283–3291 (2001)

    Article  Google Scholar 

  108. Pierre, S.A., Ferrandino, M.N., Simmons, W.N., Leitao, V.A., Sankin, G.N., Qin, J., Preminger, G.M., Cocks, F.H., Zhong, P.: Improvement in stone comminution of modern electromagnetic lithotripters by tandem pulse sequence. J. Urol. 179, 590–590 (2008)

    Article  Google Scholar 

  109. Kerbl, K., Rehman, J., Landman, J., Lee, D., Sundaram, C., Clayman, R.V.: Current management of urolithiasis: progress or regress? J. Endourol. 16, 281–288 (2002)

    Article  Google Scholar 

  110. Parr, N.J., Pye, S.D., Ritchie, A.W., Tolley, D.A.: Mechanisms responsible for diminishing fragmentation of ureteral calculi: an experimental and clinical study. J. Urol. 148, 1079–1083 (1992)

    Google Scholar 

  111. Sapozhnikov, O.A., Maxwell, A.D., MacConaghy, B., Bailey, M.R.: A mechanistic analysis of stone fracture in lithotripsy. J. Acoust. Soc. Am. 121, 1190–1202 (2007)

    Article  Google Scholar 

  112. Zhu, S., Cocks, F.H., Preminger, G.M., Zhong, P.: The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med. Biol. 28, 661–671 (2002)

    Article  Google Scholar 

  113. Lokhandwalla, M., Sturtevant, B.: Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys. Med. Biol. 45, 1923–1940 (2000)

    Article  Google Scholar 

  114. Pishchalnikov, Y.A.: Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves. J. Endourol. 17, 435–446 (2003)

    Article  Google Scholar 

  115. Arora, M., Junge, L., Ohl, C.D.: Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field. Ultrasound Med. Biol. 31, 827–839 (2005)

    Article  Google Scholar 

  116. Loske, A.M., Prieto, F.E., Gutiérrez, J., Zendejas, R., Saita, A., Velez, E.: Evaluation of a bifocal reflector on a clinical lithotripter. J. Endourol. 18, 7–16 (2004)

    Article  Google Scholar 

  117. Zhong, P., Lin, H., Xi, X., Zhu, S., Bhogte, E.S.: Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. J. Acoust. Soc. Am. 105, 1997–2009 (1999)

    Article  Google Scholar 

  118. Zhou, Y., Zhong, P.: Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: Refinement of reflector geometry. J. Acoust. Soc. Am. 113, 586–597 (2003)

    Article  Google Scholar 

  119. Loske, A.M., Fernández, F., Zendejas, H., Paredes, M., Castaño-Tostado, E.: Dual-pulse shock wave lithotripsy: in vitro and in vivo study. J. Urol. 174, 2388–2392 (2005)

    Article  Google Scholar 

  120. Fernández, F., Fernández, G., Loske, A.M.: The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy. J. Endourol. 23, 693–697 (2009)

    Article  Google Scholar 

  121. Fernández, F., Fernández, G., Loske, A.M.: Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study. J. Endourol. 23, 1247–1253 (2009)

    Article  Google Scholar 

  122. Han, J., Liang, L., Yang, X., Li, B., Gao, S., Huang, C., Chen, Z., Guo, Y.: Experimental study of the efficiency of lithotripsy with duplicate pulses. J. Endourol. 17, 207–212 (2003)

    Article  Google Scholar 

  123. Tham, L.M., Lee, H.P., Lu, C.: Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotripter shock waves: a numerical analysis. J. Urol. 178, 314–319 (2007)

    Article  Google Scholar 

  124. Bailey, M.R., Blackstock, D.T., Cleveland, R.O., Crum, L.A.: Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. J. Acoust. Soc. Am. 106, 1149–1160 (1999)

    Article  Google Scholar 

  125. Cathignol, D.: Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses. IEEE T. Ultrason. Ferr. 45, 788–799 (1998)

    Article  Google Scholar 

  126. Benes, J., Zeman, J., Pouckova, P., Zadinova, M., Sunka, P., Lukes, P.: Biological effects of tandem shock waves demonstrated on magnetic resonance. Bratisl. Med. J. 113, 335–338 (2012)

    Article  Google Scholar 

  127. Benes, J., Pouckova, P., Zeman, J., Zadinova, M., Sunka, P., Lukes, P., Kolarova, H.: Effects of tandem shock waves combined with photosan and cytostatics on the growth of tumours. Folia Biol. 57, 255–260 (2011)

    Google Scholar 

  128. Benes, J., Sunka, P., Kralova, J., Kaspar, J., Pouckova, P.: Biological effects of two successive shock waves focused on liver tissues and melanoma cells. Physiol. Res. 56, S1–S4 (2007)

    Google Scholar 

  129. Delius, M.: Medical applications and bioeffects of extracorporeal shock waves. Shock. Wave. 4, 55–72 (1994)

    Article  Google Scholar 

  130. Brümmer, F., Brauner, T., Hülser, D.F.: Biological effects of shock waves. World J. Urol. 8, 224–232 (1990)

    Article  Google Scholar 

  131. Brauner, T., Brümmer, F., Hülser, D.F.: Histopathology of shock wave treated tumor cell suspensions and multicell tumor spheroids. Ultrasound Med. Biol. 15, 451–460 (1989)

    Article  Google Scholar 

  132. Kohri, K., Uemura, T., Iguchi, M., Kurita, T.: Effect of high energy shock waves on tumor cells. Urol. Res. 18, 101–105 (1990)

    Article  Google Scholar 

  133. Clayman, R.V., Long, S., Marcus, M.: High-energy shock waves: in vitro effects. Am. J. Kidney Dis. 17, 436–444 (1991)

    Article  Google Scholar 

  134. Lifshitz, D.A., Williams, J.C., Sturtevant, B., Connors, B.A., Evan, A.P., McAteer, J.A.: Quantitation of shock wave cavitation damage in vitro. Ultrasound Med. Biol. 23, 461–471 (1997)

    Article  Google Scholar 

  135. Randazzo, R.F., Chaussy, C.G., Fuchs, G.J., Bhuta, S.M., Lovrekovich, H., deKernion, J.B.: The in vitro and in vivo effects of extracorporeal shock waves on malignant cells. Urol. Res. 16, 419–426 (1988)

    Article  Google Scholar 

  136. Delius, M., Adams, G.: Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy. Cancer Res. 59, 5227–5232 (1999)

    Google Scholar 

  137. Holmes, R.P., Yeaman, L.I., Li, W.J., Hart, L.J., Wallen, C.A., Woodruff, R.D., McCullough, D.L.: The combined effects of shock waves and cisplatin therapy on rat prostate tumors. J. Urol. 144, 159–163 (1990)

    Google Scholar 

  138. Lee, K.E., Smith, P., Cockett, A.T.: Influence of high-energy shock waves and cisplatin on antitumor effect in murine bladder cancer. Urology 36, 440–444 (1990)

    Article  Google Scholar 

  139. Gambihler, S., Delius, M.: In vitro interaction of lithotripter shock waves and cytotoxic drugs. Br. J. Cancer 66, 69–73 (1992)

    Article  Google Scholar 

  140. Kato, M., Ioritani, N., Suzuki, T., Kambe, M., Inaba, Y., Watanabe, R., Sasano, H., Orikasa, S.: Mechanism of anti-tumor effect of combination of bleomycin and shock waves. Jpn. J. Cancer Res. 91, 1065–1072 (2000)

    Article  Google Scholar 

  141. Delius, M., Denk, R., Berding, C., Liebich, H.G., Jordan, M., Brendel, W.: Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med. Biol. 16, 467–472 (1990)

    Article  Google Scholar 

  142. Huber, P., Debus, J., Peschke, P., Hahn, E.W., Lorenz, W.J.: In vivo detection of ultrasonically induced cavitation by a fibre-optic technique. Ultrasound Med. Biol. 20, 811–825 (1994)

    Article  Google Scholar 

  143. Coleman, A.J., Choi, M.J., Saunders, J.E.: Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med. Biol. 22, 1079–1087 (1996)

    Article  Google Scholar 

  144. Zhong, P., Cioanta, I., Zhu, S., Cocks, F.H., Preminger, G.M.: Effects of tissue constraint on shock wave-induced bubble expansion in vivo. J. Acoust. Soc. Am. 104, 3126–3129 (1998)

    Article  Google Scholar 

  145. Delius, M., Enders, G., Heine, G., Stark, J., Remberger, K., Brendel, W.: Biological effects of shock waves: lung hemorrhage by shock waves in dogs—pressure dependence. Ultrasound Med. Biol. 13, 61–67 (1987)

    Article  Google Scholar 

  146. Cleveland, R.O., Lifshitz, D.A., Connors, B.A., Evan, A.P., Willis, L.R., Crum, L.A.: In vivo pressure measurements of lithotripsy shock waves in pigs. Ultrasound Med. Biol. 24, 293–306 (1998)

    Article  Google Scholar 

  147. Delius, M., Brendel, W.: A model of extracorporeal shock-wave action: Tandem action of shock-waves. Ultrasound Med. Biol. 14, 515–518 (1988)

    Article  Google Scholar 

  148. Huber, P.E., Debus, J.: Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose. Radiat. Res. 156, 301–309 (2001)

    Article  Google Scholar 

  149. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med. Biol. 29, 1045–1052 (2003)

    Article  Google Scholar 

  150. Sheir, K.Z., Lee, D., Humphrey, P.A., Morrissey, K., Sundaram, C.P., Clayman, R.V.: Evaluation of synchronous twin pulse technique for shock wave lithotripsy: in vivo tissue effects. Urology 62, 964–967 (2003)

    Article  Google Scholar 

  151. Debus, J., Spoo, J., Jenne, J., Huber, P., Peschke, P.: Sonochemically induced radicals generated by pulsed high-energy ultrasound in vitro and in vivo. Ultrasound Med. Biol. 25, 301–306 (1999)

    Article  Google Scholar 

  152. Rosenthal, I., Sostaric, J.Z., Riesz, P.: Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 11, 349–363 (2004)

    Google Scholar 

  153. Ohshima, T., Tanaka, S., Teshima, K.: Effects of shock waves on microorganisms: An evaluation method of the effects. In: Takayama, K. (ed.) Shock Waves, pp. 1215–1219. Springer Verlag, New York (1991)

    Google Scholar 

  154. Kerfoot, W.W., Beshai, A.Z., Carson, C.C.: The effect of isolated high-energy shock wave treatments on subsequent bacterial growth. Urol. Res. 20, 183–186 (1992)

    Article  Google Scholar 

  155. Abe, A., Mimur, H., Ishida, H., Yoshida, K.: The effect of shock pressures on the inactivation of a marine Vibrio sp. Shock Waves 17, 143–151 (2007)

    Article  Google Scholar 

  156. Michaels, E., Fowler, J.E., Mariano, M.: Bacteriuria following extracorporeal shock wave lithotripsy of infection stones. J. Urol. 140, 524–526 (1988)

    Google Scholar 

  157. Pode, D., Lenkovsky, Z., Shapiro, A., Pfau, A.: Can extracorporeal shock wave lithotripsy eradicate persistent urinary infections associated with infected stones? J. Urol. 140, 257–259 (1988)

    Google Scholar 

  158. Alvarez, U.M., Ramírez, A., Fernández, F., Méndez, A., Loske, A.M.: The influence of single-pulse and tandem shock waves on bacteria. Shock Waves 17, 441–447 (2008)

    Article  Google Scholar 

  159. Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C.E., Hasiba, K., Maeda, Y.: Inactivation of Escherichia coli by ultrasonic irradiation. Ultrason. Sonochem. 11, 61–65 (2004)

    Article  Google Scholar 

  160. Demain, A.L., Vaishnav, P.: Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27, 297–306 (2009)

    Article  Google Scholar 

  161. Boucher, Y., Nesbo, C.L., Doolittle, W.F.: Microbial genomes: dealing with diversity. Curr. Opin. Microbiol. 4, 285–289break (2001)

    Article  Google Scholar 

  162. Chen, I., Christie, P.J., Dubnau, D.: The ins and outs of DNA transfer in bacteria. Science 310, 1456–1460 (2005)

    Article  Google Scholar 

  163. Gambihler, S., Delius, M., Ellwart, J.W.: Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J. Membr. Biol. 141, 267–275 (1994)

    Article  Google Scholar 

  164. Schaaf, A., Langbein, S., Knoll, T., Alken, P., Michel, M.S.: In vitro transfection of human bladder cancer cells by acoustic energy. Anticancer Res. 23, 4871–4875 (2003)

    Google Scholar 

  165. Schlicher, R.K., Radhakrishna, H., Tolentino, T.P., Apkarian, R.P., Zarnitsyn, V., Prausnitz, M.R.: Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32, 915–924 (2006)

    Article  Google Scholar 

  166. Jagadeesh, G., Nataraja, K.N., Udayakumar, M.: Shock waves can enhance bacterial transformation with plasmid DNA. Curr. Sci. India 87, 734–735 (2004)

    Google Scholar 

  167. Prakash, D., Rakesh, S.G., Chakravortty, D., Nataraja, K., Jagadeesh, G.: Micro-shock wave assisted bacterial transformation. In: Kontis, K. (ed.) Shock Waves, pp. 1009–1014. Springer Verlag, Heidelberg (2012) ISBN:978-3-642-25684-4

  168. Soto-Alonso, G., Cruz-Medina, J.A., Caballero-Pérez, J., Arvizu-Hernández, I., Ávalos, L.M., Cruz-Hernández, A., Romero-Gómez, S., Rodríguez, A.L., Pastrana-Martínez, X., Fernández, F., Loske, A.M., Campos-Guillén, J.: Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation. J. Microbiol. Meth. 114, 1–8 (2015)

    Article  Google Scholar 

  169. Meyer, V.: Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol. Adv. 26, 177–185 (2008)

    Article  Google Scholar 

  170. Ruiz-Diez, B.: Strategies for the transformation of filamentous fungi. J. Appl. Microbiol. 92, 189–195 (2002)

    Article  Google Scholar 

  171. Ward, O.: Production of recombinant proteins by filamentous fungi. Biotechnol. Adv. 30, 1119–1139 (2012)

    Article  Google Scholar 

  172. Soccol, C.R., Vandenberghe, L.P., Rodrigues, C., Pandey, A.: New perspectives for citric acid production and application. Food Technol. Biotech. 44, 141–149 (2006)

    Google Scholar 

  173. Fleissner, A., Dersch, P.: Expression and export: recombinant protein production systems for Aspergillus. Appl. Microbiol. Biot. 87, 1255–1270 (2010)

    Article  Google Scholar 

  174. Lubertozzi, D., Keasling, J.D.: Developing Aspergillus as a host for heterologous expression. Biotechnol. Adv. 27, 53–75 (2009)

    Article  Google Scholar 

  175. Lorito, M., Hayes, C.K., Di Pietro, A., Harman, G.E.: Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 24, 349–356 (1993)

    Article  Google Scholar 

  176. Ozeki, K., Kyoya, F., Hizume, K., Kanda, A., Hamachi, M., Nunokawa, Y.: Transformation of intact Aspergillus niger by electroporation. Biosci. Biotech. Bioch. 58, 2224–2247 (1994)

    Article  Google Scholar 

  177. Michielse, C.B., Hooykaas, P.J., van den Hondel, C.A., Ram, A.F.: Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48, 1–17 (2005)

    Article  Google Scholar 

  178. Meyer, V., Arentshorst, M., El-Ghezal, A., Drews, A.C., Kooistra, R., van den Hondel, C.A., Ram, A.F.: Highly efficient gene targeting in the Aspergillus niger kusA mutant. J. Biotechnol. 128, 770–775 (2007)

    Article  Google Scholar 

  179. de Groot, M.J., Bundock, P., Hooykaas, P.J., Beijersbergen, A.G.: Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839–842 (1998)

    Article  Google Scholar 

  180. Rassweiler, J.J., Knoll, T., Köhrmann, K.U., McAteer, J.A., Lingeman, J.E., Cleveland, R.O., Bailey, M.R., Chaussy, C.: Shock wave technology and application: an update. Eur. Urol. 59, 784–796 (2011). doi:10.1016/j.eururo.2011.02.033

    Article  Google Scholar 

  181. Evan, A.P., Willis, L.R., McAteer, J.A., Bailey, M.R., Connors, B.A., Shao, Y., Lingerman, J.E., Williams Jr, J.C., Fineberg, N.S., Crum, L.A.: Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J. Urol. 168, 1556–1562 (2002)

    Article  Google Scholar 

  182. Millán-Chiu, B., Camacho, G., Varela-Echavarría, A., Tamariz, E., Fernández, F., López-Marín, L.M., Loske, A.M.: Shock waves and DNA-cationic lipid assemblies: a synergistic approach to express. exogenous genes in human cells. Ultrasound Med. Biol. 40, 1599–1608 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Juan Carlos Álvarez, Violeta Arellano, Concepción Arredondo, Paula Bernardino, Juan Campos, Eduardo Castaño, Carmina Cortés, Miguel de Icaza, Gilberto Fernández, Prisca Gayosso, Miguel Gómez-Lim, Carlos López, Luz María López-Marín, Nancy Coconi-Linares, Denis Magaña-Ortíz, César Martínez, Blanca Millán-Chiu, Quetzalli Olguín, Elizabeth Otriz-Vazquez, Xóchitl Pastrana, René Preza, Anabel Rivas, Ángel L. Rodríguez, Mariana Tapia, Guillermo Vázquez and Roberto Zenit for significant technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Loske.

Additional information

Communicated by S. H. R. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukes, P., Fernández, F., Gutiérrez-Aceves, J. et al. Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves 26, 1–23 (2016). https://doi.org/10.1007/s00193-015-0577-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0577-0

Keywords

Navigation