Skip to main content
Log in

Medical applications and bioeffects of extracorporeal shock waves

  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Lithotripter shock waves are pressure pulses of microsecond duration with peak pressures of 35–120 MPa followed by a tensile wave. They are an established treatment modality for kidney and gallstone disease. Further applications are pancreatic and salivary stones, as well as delayed fracture healing. The latter are either on their way to become established treatments or are currently under investigation. Shock waves generate tissue damage as a side effect which has been extensively investigated in the kidney, the liver, and the gallbladder. The primary adverse effects are local destruction of blood vessels, bleedings, and formation of blood clots in vessels. Investigations on the mechanism of shock wave action revealed that lithotripters generate cavitation both in vitro and in vivo. An increase in tissue damage at higher pulse administration rates, and also at shock wave application with concomitant gas bubble injection suggested that cavitation is a major mechanism of tissue damage. Disturbances of the heart rhythm and excitation of nerves are further biological effects of shock waves; both are probably also mediated by cavitation. On the cellular level, shock waves induce damage to cell organelles; its extent is related to their energy density. They also cause a transient increase in membrane permeability which does not lead to cell death. Administered either alone or in combination with drugs, shock waves have been shown to delay the growth of small animal tumors and even induce tumor remissions. While the role of cavitation in biological effects is widely accepted, the mechanism of stone fragmentation by shock waves is still controversial. Cavitation is detected around the stone and hyperbaric pressure suppresses fragmentation; yet major cracks are formed early before cavitation bubble collapse is observed. The latter has been regarded as evidence for a direct shock wave effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams C, Lipson S, Ross L (1988) Pathologic changes in the kidney and other organs of dogs undergoing extracorporeal shock wave lithotripsy with a tubless lithotripter. J Urol 140:391

    Google Scholar 

  • Apfel RE (1981) Acoustic cavitation. In: Methods of experimental physics, Vol 19. Academic Press, New York, pp 355–411

    Google Scholar 

  • Arends TW, Nemcek AA, Rege RV, Nahrwold DL (1990) The effect of volume and number on fragmentation of gallstones by lithotripsy. J Surg Res 48:279

    Google Scholar 

  • Barkun A, Ponchon T (1990) Extracorporeal shock wave lithotripsy. Review of experimental studies and a clinical update. Ann Int Med 112:126

    Google Scholar 

  • Bierkens AF, Hendrikx AJ, DeKrt VJ, DeReyke T, Bruynen CA, Bouve ER, Beek TV, Berkel HV (1992) Efficacy of second generation lithotripters: a multicenter comparative study of 2206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X1, and Breakstone lithotrip ters. J Urol 148:1052

    Google Scholar 

  • Braun W, Claes L, Rüter A, Paschke D (1992) Effect of extracorporeal shock waves on the stability of the interface between bone and polymethylenmethacrylate: an in vitro study on human femoral segments. Clin Biomech 7:47

    Google Scholar 

  • Bräuner T, Brümmer F, Hülser DF (1989) Histopathology of shock wave treated tumor cell suspensions and multicell tumor spheroids. Ultrasound Med Biol 15:451

    Google Scholar 

  • Brendel W, Enders G (1983) Shock waves for gallstones: animal studies. Lancet 1:1054

    Google Scholar 

  • Brümmer F, Brenner J, Bräuner T, Hülser D (1989) Effect of shock waves on suspended and immobilized L1210 cells. Ultrasound Med Biol 15:229

    Google Scholar 

  • Brümmer F, Suhr D, Hülser D (1992) Sensitivity of normal and malignant cells to shock waves. J Stone Dis 4:243

    Google Scholar 

  • Capdeville R, André-Bougaran J, Barrat F, Moreaux J (1990) Lithotritie extracorporelle de la lithiase véiculaire expéimentale chez Se porc. Gastroenterol Clin Biol 14:120

    Google Scholar 

  • Chaussy C, Brendel W, Schmiedt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet 11:1265

    Google Scholar 

  • Chaussy C (1982) Extracorporeal shock wave lithotripsy. Karger, Basel

    Google Scholar 

  • Chen YL, Kuhl T, Israelachvili J (1992) Mechanism of cavitation in thin liquid films: collapse damage vs. inception damage. Wear 153:31

    Google Scholar 

  • Church C (1989) A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J Acoust Soc Am 86:215

    Google Scholar 

  • Clemedson CJ (1956) Blast injury. Physiol Rev (Wash) 36:336

    Google Scholar 

  • Cohen NP, Whitfield HN (1993) Mechanical testing of urinary calculi. World J Urol 11:13

    Google Scholar 

  • Coleman AJ, Saunders JE, Preston RC, Bacon DR (1987a) Pressure waveforms generated by a Dornier extracorporeal shock wave lithotripter. Ultrasound Med Biol 13:651

    Google Scholar 

  • Coleman AJ, Saunders JE, Crum LA, Dyson M (1987b) Acoustic cavitation generated by an extracorporeal shock wave lithotripter. Ultrasound Med Biol 13:69

    Google Scholar 

  • Coleman AJ, Saunders JE (1989) A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med Biol 15:213

    Google Scholar 

  • Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31:75

    Google Scholar 

  • Constantinides C, Recker F, Jaeger P, Hauri D (1989) Extracorporeal shock wave lithotripsy as monotherapy for staghorn calculi: 3 years of experience. J Urol 142:1415

    Google Scholar 

  • Coptcoat MJ, Webb DR, Kellett MJ, Fletcher MS, McNicholas TA, Dickinson IK, Whitfield HM, Wickham EA (1986) The complications of extracorporeal shock wave lithotripsy: management and prevention. Br J Urol 58:578

    Google Scholar 

  • Crum L (1979) Tensile strength of water. Nature 278:148

    Google Scholar 

  • Crum L (1982a) Acoustic cavitation. In: Proceedings of the 1982 IEEE ultrasonic symposium. IEEE, New York, pp 1–11

    Google Scholar 

  • Crum L (1982b) Nucleation and stabilization of microbubbles in liquids. Appl Scientific Res 38:101

    Google Scholar 

  • Crum L (1984) Acoustic cavitation series: part five. Rectified diffusion. Ultrasonics 22:215

    Google Scholar 

  • Dalecki D, Keller BB, Carstensen E, Neel DS, Paladino JL, Noordergraf A (1991) Thresholds for premature ventricular contraction in frog hearts exposed to lithotripter fields. Ultrasound Med Biol 17:341

    Google Scholar 

  • Darzi A, El-Sayed E, O'Morain C, Tanner WA, Keane FB (1991) Piezoelectric lithotripsy for gallstones: analysis of results in patients with extended selection. Br J Surg 78:163

    Google Scholar 

  • Dear JP, Field JE (1988) A study of the collapse of arrays of cavities. J Fluid Mech 190:409

    Google Scholar 

  • Delhaye M, Vandermeeren A, Baize M, Cremer M (1992) Extracorporeal shock wave lithotripsy of pancreatic calculi. Gastroenterology 102:610

    Google Scholar 

  • Delius M, Enders G, Heine G, Stark J, Remberger K, Brendel W (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs — pressure dependence. Ultrasound Med Biol 13:61

    Google Scholar 

  • Delius M, Brendel W (1988a) A model of extracorporeal shock wave action: tandem action of shock waves. Letter to the editor. Ultrasound Med Biol 14:515

    Google Scholar 

  • Delius M, Enders G, Xuan Z, Liebich H, Brendel W (1988b) Biological effects of shock waves: kidney damage by shock waves in dogs — dose dependence. Ultrasound Med Biol 14:117

    Google Scholar 

  • Delius M, Jordan M, Eizenhoefer H, Marlinghaus E, Heine G, Liebich H, Brendel W (1988c) Biological effects of shock waves: kidney hemorrhage by shock waves in dogs — administration rate dependence. Ultrasound Med Biol 14:689

    Google Scholar 

  • Delius M, Heine G, Brendel W (1988d) A mechanism of gallstone destruction by extracorporeal shock waves. Naturwissenschaften 75:200

    Google Scholar 

  • Delius M, Brendel W (1989a) Mechanisms of action in extracorporeal shock wave lithotripsy: experimental studies. In: Ferrucci J, Burhenne HJ, Delius M (eds) Biliary Lithotripsy. Year Book, Chicago, pp 31–42

    Google Scholar 

  • Delius M, Weiss N, Gambihler S, Goetz A, Brendel W (1989b) Tumor therapy with shock waves requires modified lithotripter shock waves. Naturwissenschaften 76:573

    Google Scholar 

  • Delius M, Denk R, Berding C, Liebich H, Jordan M, Brendel W (1990a) Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16:467

    Google Scholar 

  • Delius M, Jordan M, Liebich HG, Brendel W (1990b) Biological effects of shock waves: effect of shock waves on the liver and gallbladder wall of dogs — administration rate dependence. Ultrasound Med Biol 16:459

    Google Scholar 

  • Delius M, Mueller W, Goetz A, Liebich HG, Brendel W (1990c) Biological effects of shock waves: kidney hemorrhage in dogs at a fast shock wave administration rate of 15 Hz. J Lithotripsy Stone Dis 2:103

    Google Scholar 

  • Delius M, Gambihler S (1991) Effect of shock waves on gallstones and materials. In: Paumgartner G, Sauerbruch T, Sackmann M, Burhenne HJ (eds) Lithotripsy and related techniques for gallstone treatment. Mosby Year Book, St. Louis, pp 27–33

    Google Scholar 

  • Delius M, Gambihler S (1992) Sonographic imaging of extracorporeal shock wave effects in the liver and gallbladder of dogs. Digestion 26:55

    Google Scholar 

  • Delius M, Hoffmann E, Steinbeck G, Conzen P (1994a) Biological effects of shock waves: induction of arrhythmia in piglet hearts. Ultrasound Med Biol 20:279

    Google Scholar 

  • Delius M, Ueberle F, Gambihler S (1994b) Destruction of gallstones and model stones by extracorporeal shock waves. Ultrasound Med Biol 20:251

    Google Scholar 

  • Dellian M, Walenta S, Gamarra F, Kuhnle G, Mueller-Klieser W, Goetz AE (1994) High-energy shock waves enhance hyperthermic response of tumors: effects on blood flow, energy metabolism, and tumor growth. J Nat Cancer Inst 86:287

    Google Scholar 

  • Dornier Medizintechnik GmbH (ed) Dornier lithotripters shock wave generation systems/technical data. Dornier Medizintechnik GmbH, 82110 Germering, FRG

  • Drach G, Dretler S, Fair W, Finlayson B, Gillenwater J, Griffith D, Lingeman J, Newman D (1986) Report of the United States cooperative study of extracorporeal shock wave lithotripsy. J Urol 135:1127

    Google Scholar 

  • Dretler SP (1988) Stone fragility — a new therapeutic distinction. J Urol 139:1124

    Google Scholar 

  • Dretler SP (1989) The clinical significance of variations in urinary stone fragility. J Lithotripsy Stone Dis 1:192

    Google Scholar 

  • Dyrszka H, Patel S, Sanghavi B, Patel G, Byk C, Salen G (1991) Sonographic gallstone patterns are of value in predicting the outcome of biliary lithotripsy. Am J Gastroenterol 86:1626

    Google Scholar 

  • Eisenberger F, Miller K (1987) Urologische Steintherapie. Thieme, Stuttgart

    Google Scholar 

  • Eisenmenger W (1964) Experimentelle Bestimmung der Stossfrontdicke aus dem akustischen Frequenzspektrum elektromagnetisch erzeugter Stosswellen in Fluessigkeiten bei einem Stossdruckbereich von 10 atm bis 100 atm. Acustica 14:188

    Google Scholar 

  • Ell C, Kerzel W, Heyder N, Rödl W, Langer H, Mischke U, Giedl J, Domschke W (1989) Tissue reactions under piezoelectric shock wave application for the fragmentation of biliary calculi. Gut 30:680

    Google Scholar 

  • Feigl T, Schneider T, Riedlinger R, Löhr M, Hahn EG, Ell C (1992) Beschallung von humanen Pankreaskarzinomzellen mit hochenergetischem gepusltem Ultraschall, (engl abstract) Med Tech 3:139

    Google Scholar 

  • Filipcynski L, Piechocki M (1990) Estimation of the temperature increase in the focus of a lithotripter for the case of high rate administration. Ultrasound Med Biol 16:149

    Google Scholar 

  • Folberth W, Köhler G, Rohwedder A, Matura E (1992) Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources. J Stone Dis 4:1

    Google Scholar 

  • Forer LE, Davros WJ, Goldberg J, Al-Kawas F, Garra BS, Hayes W, Zeman RK (1992) Hepatic cavitation. A marker of transient hepatocellular injury during biliary lithotripsy. Dig Dis Sci 37:1510

    Google Scholar 

  • Forssmann B, Hepp W, Chaussy C, Eisenberger F, Wanner K (1977) Eine Methode zur beruehrungsfreien Zertruemmerung von Nierensteinen durch Stosswellen. Biomed Tech 22:164

    Google Scholar 

  • Gamarra F, Spelsberg F, Kuhnle G, Goetz AE (1993) High-energy shock waves induce blood flow reduction in tumors. Cancer Res 53:1590

    Google Scholar 

  • Gambihler S, Delius M, Brendel W (1990) Biological effects of shock waves: cell disruption, viability, and proliferation of L1210 cells exposed to shock waves in vitro. Ultrasound Med Biol 16:587

    Google Scholar 

  • Gambihler S, Delius, M (1992a) Influence of dissolved and free gases on iodine release and cell killing by shock waves in vitro. Ultrasound Med Biol 18:617

    Google Scholar 

  • Gambihler S, Delius M (1992b) In-vitro interaction of lithotripter shock waves and cytotoxic drugs. Br J Cancer 65:69

    Google Scholar 

  • Gambihler S, Delius M, Ellwart JW (1992b) Transient increase in membrane permeability of L1210 cells upon exposure to lithotripter shock waves in vitro. Naturwissenschaften 79:328

    Google Scholar 

  • Gambihler S, Delius M, Ellwart JW (1994) Permeabilization of the plasma membrane of L1210 mouse levkemia cells using lithotripter shock waves. J Membr Biol 141

  • Geldorf AA, De Voogt HJ, Rao BR (1989) High energy shock waves do not affect either primary tumor growth or metastasis of prostate carcinoma, R3327-Mat LyLu. Urol Res 17:9

    Google Scholar 

  • Goedegebure A, van der Steen AF, Thijssen JM (1992) In vitro classification of gallstones by quantitative echography. Ultrasound Med Biol 18:553

    Google Scholar 

  • Gracewski SM, Vakil N, Everbach EC, Davis ME, Burns SJ (1992) Microhardness propterties of human gallstones and synthetic stones. J Mat Sci Lett 11:554

    Google Scholar 

  • Gracewski SM, Dahake G, Ding Z, Burns SJ, Everbach EC (1993) Internal stress wave measurements in solids subjected to lithotripter pulses. J Acoust Soc Am 94:652

    Google Scholar 

  • Granz B, Köhler G (1992) What makes a shock wave efficient in lithotripsy? J Stone Dis 4:123

    Google Scholar 

  • Greenspan M, Tschiegg CE (1967) J Res Natl Bur Stand Sect C 71:299

    Google Scholar 

  • Grote R, Döhring W, Aeikens B (1986) Computertomographischer und sonographischer Nachweis von renalen und perirenalen Veränderungen nach einer extrakorporalen Stoßellenlithotripsie. Fortschr Röntgenstr 144:434

    Google Scholar 

  • Gunasekaran S, Donovan JM, Chvapil M, Drach GW (1989) Effects of extracorporeal shock wave lithotripsy on structure and function of rabbit kidney. J Urol 141:1250

    Google Scholar 

  • Hartman C, Child SZ, Mayer R, Schenk E, Carstensen EL (1990) Lung damage from exposure to the fields of an electrohydraulic lithotripter. Ultrasound Med Biol 16:675

    Google Scholar 

  • Häusler E, Kiefer W (1971) Anregung von Stoßellen in Flüssigkeiten durch Hochgeschwindigkeitswassertropfen. Verhandlungen Dtsch Physikal Gesellsch [VI] 6:786

    Google Scholar 

  • Henglein A, Gutiérrez M, Ulrich R (1988) Oxidation of iodide by the intense acoustic burst of an extracorporeal lithotripter. Int J Radiat Biol 54:123

    Google Scholar 

  • Holmes RP, Yeaman LI, Li WJ, Hart LJ, Wallen CA, Woodruff RD, McCullough DL (1990) The combined effects of shock waves and cisplatin therapy on rat prostate tumors. J Urol 144:159

    Google Scholar 

  • Holtum D (1993) Eigenschaften und Desintegration von menschlichen Gallensteinen unter Stoßellenwirkung. Inaugural dissertation, University of Stuttgart, Stuttgart

    Google Scholar 

  • Hoshi S, Orikasa S, Kuwahara M, Suzuki K, Yoshikawa K, Saitoh S, Ohyama C, Satoh M, Dawamura S, Nose M (1991) High energy underwater shock wave treatment on implanted urinary bladder cancer in rabbits. J Urol 146:439

    Google Scholar 

  • Hoshi S, Orikasa S, Kuwahara M, Suzuki K, Shirai S, Yoshikawa K, Nose M (1992) Shock wave and THP-Adriamycin for treatment of rabbit's bladder cancer. Jpn J Cancer Res 83:248

    Google Scholar 

  • Iro H, Nitsche N, Schneider H, Ell C (1989) Extracorporeal shock wave lithotripsy of salivary gland stones. Lancet II:115

    Google Scholar 

  • Iro H, Schneider H, Födra C, Waitz G, Nitsche N, Heinritz HH, Benninger J, Ell C (1992) Shockwave lithotripsy of salivary gland stones. Lancet 339:1333

    Google Scholar 

  • Janowitz P, Janowitz A, Schumacher KA, Wechsler JG, Ditschuneit H (1992) Occult gallbladder perforation; an unusual complication of gallstone lithotripsy. Hepato-Gastroenterol 39:43

    Google Scholar 

  • Johrde LG, Cocks FH (1985a) Microhardness of renal calculi. Materials Letters 3:111

    Google Scholar 

  • Johrde LG, Cocks FH (1985b) Fracture strength of renal calculi. J Mat Science Letters 4:1264

    Google Scholar 

  • Jones BJ, McHale AP, Butler MR (1992) Effect of high energy shock wave frequency on viability of malignant cells in vitro. Eur Urol 22:70

    Google Scholar 

  • Karlsen JS, Smevik B, Hovig T (1991) Acute morphological changes in canine kidneys following exposure to extracorporeal shock waves. Urol Res 19:105

    Google Scholar 

  • Kater W, Hurst A, Schlick R, Buhne P, Herrmann G (1992) Salivary gland stones — chances, risks, and limits of ESWL. Endourology 6:S53

    Google Scholar 

  • Kaude JV, Williams CH, Millner MR, Scott KN, Finlayson B (1985) Renal morphology and function immediately after extracorporeal shockwave lithotripsy. AJR 15:305

    Google Scholar 

  • Klee LW, Britto JG, Lingeman JE (1991) The implications of brushite calculi. J Urol 145:715

    Google Scholar 

  • Knapp PM, Kulb TB, Lingeman JE, Newman DM, Mertz J, Mosbaugh PG, Steele RE (1988) Extracorporeal shock wave lithotripsy-induced perirenal hematomas. J Urol 139:700

    Google Scholar 

  • Koch H, Grünewald M (1989) Disintegration mechanisms of weak acoustical shock waves. In: Ultrasonics international 1989 conference proceedings. Butterworth, Guildford, pp 1136–1141

    Google Scholar 

  • Kohri K, Iguchi M, Kurita T (1990) Effect of high energy shock waves on tumor cells. Urol Res 18:101

    Google Scholar 

  • Köhrmann KU, Rassweiler J, Fröhner S, Raab M, Marlinghaus EH, Back W, Jaschke W, Alken P (1992) Stoßelleninduzierte Nierenläsion am Hundemodell: Einfluß von Generatorspannung und Stoßellenanzahl im Akutversuch. Akt Urol 23:169

    Google Scholar 

  • Kuwahara M, Kambe K, Kurosu S, Orikasa S, Takayama K (1986) Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves. J Urol 135:814

    Google Scholar 

  • Kuwahara M, Ioritani N, Kambe K, Shirai S, Taguchi K, Saitoh T, Orikasa S, Takayama K, Aida S, Iwama N (1989) Hyperechoic region induced by focused shock waves in vitro and in vivo: possibility of acoustic cavitation bubbles. J Lithotripsy Stone Dis 1:282

    Google Scholar 

  • Lam HS, Lingeman JE, Barron M, Newman DM, Mosbaugh PG, Steele RE, Knapp PM, Scott JW, Nyhuis A, Woods JR (1992) Staghorn calculi: analysis of treatment results between initial percutaneous nephrostolithototomy and extracorporeal shock wave lithotripsy monotherapy with reference to surface area. J Urol 147:1219

    Google Scholar 

  • Laudone VP, Morgan TR, Huryk RF, Heston WD, Fair WR (1989) Cytotoxicity of high energy shock waves: methodologic considerations. J Urol 141:965

    Google Scholar 

  • Lingeman JE, Newman D, Mertz JH, Mosbaugh PG, Steele RE, Kahnoski RJ, Coury TA, Woods JR (1986) Extracorporeal shock wave lithotripsy: the Methodist Hospital of Indiana experience. J Urol 135:1134

    Google Scholar 

  • McCullough DL, Yeaman LD, Bo WJ, Assimos DG, Kroovand RL, Griffin AS, Furr EG (1989) Effect of shock waves on the rat ovary. J Urol 141:666

    Google Scholar 

  • McGrath FP, Lee RH, Gibney RG, Burhenne HJ (1990) Hepatic subcapsular hematoma: an unusual complication of biliary lithotripsy. AJR 154:1015

    Google Scholar 

  • Miller K, Bachor R, Sauter T, Hautmann R (1990) ESWL monotherapy for large stones and staghorn calculi. Urol Int 45:95

    Google Scholar 

  • Mishriki SF, Baker AC, Fenely RC (1992) The energy concept in lithotripsy. J Endourol 6:225

    Google Scholar 

  • Morgan TR, Laudone VP, Heston WD, Zeitz L, Fair WR (1988) Free radical production by high energy shock waves — comparison with ionizing radiation. J Urol 139:186

    Google Scholar 

  • Mueller M (1987) Experimental investigations on focusing of weak spherical shock waves in water by shallow ellipsoidal reflectors. Acustica 64:85

    Google Scholar 

  • Mueller M (1988) Experimentelle Untersuchungen zur Fokussierung sphaerischer Stosswellen in Wasser durch tiefe ellipsoide Reflektoren. Acustica 66:58

    Google Scholar 

  • Mueller M (1990) Dornier-Lithotripter im Vergleich. Vermessung der Stoßellenfelder und Fragmentationswirkungen. (Comparison of Dornier lithotripters. Measurement of shock wave fields and fragmentation effectiveness). Biomed Technik 35:250

    Google Scholar 

  • Neisius D, Seitz G, Gebhardt T, Ziegler, M (1989) Dose-dependent influence on canine renal morphology after application of extracorporeal shock waves with Wolf Piezolith. J Endourol 3:337

    Google Scholar 

  • Newman R, Hackett R, Senior D, Brock K, Feldman J, Sosnowski J, Finlayson B (1987) Pathological effects of ESWL on canine renal tissue. Urology 23:194

    Google Scholar 

  • Nitsche R, Schweinsberg V, Klengel H, Niedmann PD, Fölsch UR (1993) Different modes of fragmenting gallstones in extracorporeal shock wave lithotripsy. Scand J Gastroenterol 28:229

    Google Scholar 

  • Oosterhof GON, Smits GAHJ, de Ruyter AE, van Moorselaaar RJA, Schalken JA (1989) The in vitro effect of electromagnetically generated shock waves (Lithostar) on the Dunning R3327 PAT-2 rat prostatic cancer cell-line. Urol Res 17:13

    Google Scholar 

  • Oosterhof GON, Smits GAHJ, de Ruyter AE, Schalken JA, Debruyne FMJ (1990) In vivo effects of high energy shock waves on urological tumors: an evaluation of treatment modalities. J Urol 144:785

    Google Scholar 

  • Oosterhof G, Smits G, De Ruyter A, Schalken J, Debruyne F (1991) Effects of high energy shock waves combined with biological response modifiers in different human kidney cancer xenografts. Ultrasound Med Biol 17:391

    Google Scholar 

  • Parr NJ, Ritchie AWS, Tolley DA (1992) Mechanisms responsible for diminished fragmentation of ureteral calculi: an experimental and clinical study. J Urol 148:1079

    Google Scholar 

  • Philipp A, Delius M, Scheffcyk C, Vogel A, Lauterborn W (1993) Interaction of lithotripter-generated shock waves with air bubbles. J Acoust Soc Am 93:2496

    Google Scholar 

  • Ponchon T, Barkun A, Berger F, Ayela P, Margonari J, Capron F (1989) Experimental tissue lesions related to extracorporeal shock wave lithotripsy of gallbladder. Surg Gynecol Obstet 169:435

    Google Scholar 

  • Prat F, Ponchon T, Berger F, Chapelon Y, Gagnon P, Cathignol D (1991a) Hepatic lesions in the rabbit induced by acoustic cavitation. Gastroenterology 100:1345

    Google Scholar 

  • Prat F, Chapelon JY, Ponchon T, Cathignol D (1991b) Cytotoxic effects of acoustic cavitation on HT-29 cells and a rat peritoneal carcinomatosis in vitro. Cancer Res 51:3024

    Google Scholar 

  • Prat F, Chapelon JY, El Fadil FA, Sibille A, Theillière Y, Ponchon T, Cathignol D (1994) Focused liver ablation by cavitation in the rabbit: a potential new method of extracorporeal treatment. Gut 35:395

    Google Scholar 

  • Randazzo RF, Chaussy CG, Fuchs GJ, Bhuta SM, Lovrecovich H, deKernion JB (1988) The in vitro and in vivo effects of extracorporeal shock waves on malignant cells. Urol Res 16:419

    Google Scholar 

  • Rassweiler J, Köhrmann KH, Back W, Fröhner S, Raab M, Weber A, Kahmann F, Marlinghaus EH, Jünemann KP, Alken P (1993) Experimental basis of shock wave induced renal trauma in the model of the canine kidney. World J Urol 11:43

    Google Scholar 

  • Recker F, Bex A, Constantinides C (1989) Morphological changes following ESWL in the rat kidney. Urol Res 17:229

    Google Scholar 

  • Recker F, Bex A, Hofmann W, Uhlschmid G, Tscholl R (1992) Pathogenesis and shock wave rate dependence of intrarenal injury from extracorporeal lithotripsy. J Endourol 6:199

    Google Scholar 

  • Robertson WG, Peacock, Baker M, Marshall DH, Pearlman B, Speed R, Sergeant V, Smith A (1983) Epidemiological studies on the prevalence of urinary stone disease in Leeds. In: Ryall RL, Brockis JG, Marshall VR, Finlayson B (eds) Urinary stone. Churchill Livingstone, Melbourne, pp 6–10

    Google Scholar 

  • Roda E, Morselli Labate AM, Sama C, Festi D, Barbara L (1989) Epidemiology of gallstone disease. In: Ferrucci JT, Delius M, Burhenne HJ (eds) Biliary lithotripsy. Year Book, Chicago, pp 131–138

    Google Scholar 

  • Rüdiger K, Wetterauer U, Hakenberg O, Sommerkamp H (1992) Histomorphologic changes in rat testicles after high-energy shock wave lithotripsy. J Endourol 6:37

    Google Scholar 

  • Russo P, Stephensen RA, Mies C, Huryk R, Heston WDW, Melamed MR, Fair WR (1986) High energy shock waves suppress tumor growth in vitro and in vivo. J Urol 135:626

    Google Scholar 

  • Russo P, Mies C, Huryk R, Heston WDW, Fair WR (1987) Histopathologic and ultrastructural correlates of tumor growth suppression by high energy shock waves. J Urol 137:338

    Google Scholar 

  • Sackmann M, Delius M, Sauerbruch T, Holl J, Weber W, Ippisch E, Hagelauer U, Wess O, Hepp W, Brendel W, Paumgartner G (1988) Shockwave lithotripsy of gallbladder stones: the first 175 patients. New Engl J Med 318:393

    Google Scholar 

  • Sackmann M, Pauletzki J, Sauerbruch T, Holl J, Schelling G, Paumgartner G (1991) The Munich gallbladder lithotripsy study. Annals Int Med 114:290

    Google Scholar 

  • Sackmann M, Hiller H, Ippisch E, Klueppelberg M, Neubrand M, Pauletzki J, Sauerbruch T, Holl J, Paumgartner G (1992) Gallstone recurrence after lithotripsy. Gastroenterology 102:A332

    Google Scholar 

  • Sass W, Bräunlich M, Dreyer HP, Matura E, Folberth W, Priesmeyer HG, Seifert J (1991) The mechanisms of stone disintegration by shock waves. Ultrasound Med Biol 17:239

    Google Scholar 

  • Sauerbruch T, Delius M, Paumgartner G, Holl J, Wess O, Weber W, Hepp W, Brendel W (1986) Fragmentation of gallstones by extracorporeal shock waves. New Engl J Med 314:818

    Google Scholar 

  • Sauerbruch T, Holl J, Sackmann M, Werner R, Wotzka R, Paumgartner G (1987) Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with chronic pancreatitis. Endoscopy 19:207

    Google Scholar 

  • Sauerbruch T, Stern M (1989) Fragmentation of bile duct stones by extracorporeal shock waves. Gastroenterology 96:146

    Google Scholar 

  • Schachler R, Sauerbruch T, Wosiewitz U, Holl J, Hahn D, Denk R, Neubrand M, Paumgartner G (1988) Fragmentation of gallstones using extracorporeal shock waves: an in vitro study. Hepatology 8:925

    Google Scholar 

  • Schelling G, Delius M, Gschwender M, Grafe P, Gambihler S (1994) Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophys J 66:133

    Google Scholar 

  • Schleberger R, Senge T (1992) Non-invasive treatment of long-bone pseudarthrosis by shock waves (ESWL). Arch Orthop Trauma Surg 111:224

    Google Scholar 

  • Schulte SJ, Baron RL (1990) Piezoelectric biliary lithotripsy: an in vitro study of factors affecting gallstone fragmentation. Am J Roentgenol 155:1211

    Google Scholar 

  • Singh VR, Agarwal R (1990) Mechanical and ultrasonic parameters of kidney stones. J Lithotripsy Stone Dis 2:117

    Google Scholar 

  • Smits GA, Oosterhof GO, Ruyter AE, Schalken JA, Debruyne FM (1991) Cytotoxic effects of high energy shock waves in different in vitro models: influence of the experimental set-up. J Urol 145:171

    Google Scholar 

  • Soehendra N, Nam VC, Binmoeller KF, Koch H, Bohnacker S, Schreiber HW (1994) Pulverization of calcified and non-calcified gall bladder stones: extracorporeal shock wave lithotripsy used alone. Gut 35:417

    Google Scholar 

  • Staudenraus J, Eisenmenger W (1993) Fiber optic probe hydrophone for ultrasonic and shock wave measurements in water. Ultrasonics 31:267

    Google Scholar 

  • Steinbach P, Hofstädter F, Nicolai H, Rössler W, Wieland W (1992) In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med Biol 18:691

    Google Scholar 

  • Steinberg DJ (1993) A brief review of cavitation bubble collapse near a rigid boundary. J Stone Dis 5:49

    Google Scholar 

  • Stoller M, Litt L, Salazar RG (1989) Severe hemorrhage after extracorporeal shock-wave lithotripsy. Ann Int Med 111:612

    Google Scholar 

  • Stranne SK, Cocks FH, Gettliffe R (1990) Mechanical property studies of human gallstones. J Biomed Mat Res 24:1049

    Google Scholar 

  • Suhr D, Brummer F, Hülser DF (1991) Cavitation generated free radicals during shock wave exposure: investigations with cell-free solutions and suspended cells. Ultrasound Med Biol 17:761

    Google Scholar 

  • Tomita Y, Shima A (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J Fluid Mech 169:535

    Google Scholar 

  • Torres WE, Baumgartner BR, Jones MT, Nelson RC (1990) Biliary lithotripsy: in vitro analysis of gallstone fragmentation for equivalent stone volumes. Radiology 177:507

    Google Scholar 

  • Tsuchiya Y, Ohto M, Yazawa T (1986) Ultrasonic properties of gallstones differentiation between cholesterol stones and pigment stones. Biliary Tract & Pankreas 7:1483

    Google Scholar 

  • Vahlensieck W, Hesse A, Bach D (1980) Zur Prävalenz des Harnsteinleidens in der Bundesrepublik Deutschland. Urologe B 20:273

    Google Scholar 

  • Vakil N, Everbach EC (1991a) Gas in gallstones: qualitative determinations and possible effects of fragmentation by shock waves. Gastroenterology 101:1626

    Google Scholar 

  • Vakil N, Gracewsky SM, Everbach EC (1991b) Relationship of model stone properties to fragmentation mechanisms during lithotripsy. J Lithotripsy Stone Dis 3:304

    Google Scholar 

  • Vakil N (1993) Transient acoustic cavitation in gallstone fragmentation: a study of gallstones fragmented in vivo. Ultrasound Med Biol 19:331

    Google Scholar 

  • Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and nonunion of fractures. Internat Orthopaedics (SICOT) 15:181

    Google Scholar 

  • Vellar ID, Desmond PV, Pritchard CP, Banting SW, Salomon KL, Vellar D, Henderson MA (1993) Extracorporeal shock wave lithotripsy combined with litholytic therapy in the treatment of patients with symptomatic gallstones — the Melbourne experience. Med J Australia 158:94

    Google Scholar 

  • Vogel A, Lauterborn W, Timm R (1989) Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J Fluid Mech 206:299

    Google Scholar 

  • Warlters A, Morris DL, Cameron-Strange A, Lynch W (1992) Effect of electrohydraulic and extracorporeal shock waves on gastrointestinal cancer cells and their response to cytotoxic agents. Gut 33:791

    Google Scholar 

  • Weber W, Madler K, Peter K, Chaussy C (1984) Anaesthesia in extracorporeal shock wave lithotripsy. Eur J Anaesth 1:160

    Google Scholar 

  • Weber W, Alpen E, Gravenstein N, Banner MJ, Hügler P, Peter K (1987) Inhalation anesthesia during high frequency jet ventilation for extracorporeal shock wave therapy of gallbladder stones, Anesth Analg 66:S187

    Google Scholar 

  • Weber W, Peter K, Negri L, Schelling G (1989) Anaesthesia for extracorporeal shock wave lithotripsy. In: Nunn JF, Utting JE, Brown BR (eds) General Anaesthesia, 5th ed. Butterworths, London, pp 974–982

    Google Scholar 

  • Weber C, Moran ME, Braun ED, Drach GW (1992) Injury of rat renal vessels following extracorporeal shock wave treatment. J Urol 147:476

    Google Scholar 

  • Wehner HD, Sellier K (1982) Compound action potentials in the peripheral nerve induced by shock-waves. Acta Chir Scand 508 Suppl:179

    Google Scholar 

  • Weinstein JN, Oster DM, Park JB, Park SH, Loening S (1988) The effect of the extracorporeal shock wave Lithotripter on the bone-cement interface in dogs. Clinical Orthopaedics and Related Research 235:261

    Google Scholar 

  • Weiss N, Delius M, Gambihler S, Dirschedl P, Goetz A, Brendel W (1990) Influence of the shock wave application mode on the growth of A-Mel 3 and SSK2 tumors in vivo. Ultrasound Med Biol 16:595

    Google Scholar 

  • Weiss N, Delius M, Gambihler S, Eichholz-Wirth H, Dirschedl P, Brendel W (1994) Effect of shock waves and cisplatin on cisplatin sensitive and resistant rodent tumors in vivo. Int J Cancer in press

  • Wickham JE (1990) A brief history of renal stone surgery. In: Wickham JE, Buck AC (eds) Renal tract stone. Churchill Livingstone, Edinburgh, p 453

    Google Scholar 

  • Williams AR, Delius M, Miller DL, Schwarze W (1989) Investigation of cavitation in flowing media by lithotripter shock waves both in vitro and in vivo. Ultrasound Med Biol 15:53

    Google Scholar 

  • Wirtzfeld A, Himmler FC, Forßann B, Hepp W, Erhardt W, Wriedt-Lübbe I, Blümel G, Blömer H (1979) Externe mechanische Herzstimulation. Methoden und Möglichkeiten. Z Kardiol 68:583

    Google Scholar 

  • Yeaman LD, Jerome CP, McCullough DL (1989) Effects of shock waves on the structure and growth of the immature rat epiphysis. J Urol 141:670

    Google Scholar 

  • Yoshida O, Okada Y (1990) Epidemiology of urolithiasis in Japan: a chronological and geographical study. Urol Res 45:104

    Google Scholar 

  • Yount DE, Gillary EW, Hoffman DC (1984) A microscopic investigation on bubble formation nuclei. J Acoust Soc Am 76:1511

    Google Scholar 

  • Zeman RK, Davros WJ, Garra BS, Horri, SC (1990a) Cavitation effects during lithotripsy. Part I. Results of in vitro experiments. Radiology 177:157

    Google Scholar 

  • Zeman RK, Davros WJ, Garra BS, Goldberg JA, Horii SC, Silverman PM, Cattau EL, Hayes WS, Cooper CJ (1990b) Cavitation effects during lithotripsy. Part II. Clinical observations. Radiology 177:163

    Google Scholar 

  • Zeman RK, Marchand T, Davros WJ, Garra BS, Glass-Royal M, Soloway RD (1991) Gallstone fragmentation during biliary lithotripsy: effect of stone composition and structure. AJR 156:493

    Google Scholar 

  • Zhong P, Chuong CJ, Goolsby RD, Preminger GM (1992) Microhardness measurements of renal calculi: regional differences and effects of microstructure. J Biomed Mater Res 26:1117

    Google Scholar 

  • Zhong P, Chuong CJ, Preminger GM (1993) Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: application in extracorporeal shock wave lithotripsy. J Acoust Soc Am 94:29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delius, M. Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4, 55–72 (1994). https://doi.org/10.1007/BF01418569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01418569

Key words

Navigation