Skip to main content

Advertisement

Log in

Development of micro-shock wave assisted dry particle and fluid jet delivery system

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound [high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising ∼9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-μm thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 μm diameter have been successfully delivered into agarose gel targets of various strengths (0.6–1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter ∼200–250 μm (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allam US, Krishna MG, Lahiri A, Joy O, Chakravortty D (2011) Salmonella enterica serovar typhimurium lacking hfq gene confers protective immunity against murine typhoid. PLoS One 6:e16667. doi:10.1371/journal.pone.0016667

    Article  CAS  Google Scholar 

  • Arora A, Hakim I, Baxter J, Rathnasingham R, Srinivasan R, Fletcher DA, Mitragotri S (2007) Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci U S A 104:4255–4260. doi:10.1073/pnas.0700182104

    Article  CAS  Google Scholar 

  • Bellhouse BJ, Quinlan NJ, Ainsworth RW (1997) Needle-less delivery of drugs, in dry powder form, using shock waves and supersonic flow. International Symposium on Shock Waves, Queensland, Australia, pp 51–56

  • Coleman AJ, Whitlock M, Leighton T, Saunders JE (1993) The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter. Phys Med Biol 38:1545–1560. doi:10.1088/0031-9155/38/11/001

    Article  CAS  Google Scholar 

  • Dehn J (1987) A unified theory of penetration. Int Journal of Impact Engineering 5:239–248. doi:10.1016/0734-743X(87)90041-8

    Article  Google Scholar 

  • Delius M, Adams G (1999) Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy. Cancer Res 59:5227–5232

    CAS  Google Scholar 

  • Divya Prakash G, Anish RV, Jagadeesh G, Chakravortty D (2011) Bacterial transformation using micro-shock waves. Anal Biochem 419:292–301. doi:10.1016/j.ab.2011.08.038

    Article  CAS  Google Scholar 

  • Dmirty R, Simonnet C, Groisman A (2005) Pneumatic capillary gun for ballistic delivery of micro particles. App Phy Let 87:014103. doi:10.1063/1.1951044

    Article  Google Scholar 

  • Doukas AG, Flotte TJ (1996) Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med Biol 22:151–164. doi:10.1016/0301-5629(95)02026-8

    Article  CAS  Google Scholar 

  • Finer JJ, Finer KR, Ponappa T (1999) Particle bombardment mediated transformation. Curr Top Microbiol Immunol 240:59–80

    CAS  Google Scholar 

  • Gambihler S, Delius M (1992) Transient increase in membrane permeability of l1210 cells upon exposure to lithotripter shock waves in vitro. Naturwissenschaften 79:328–329. doi:10.1007/BF01138714

    Article  CAS  Google Scholar 

  • Gambihler S, Delius M, Ellwart JW (1994) Permeabilization of the plasma membrane of l1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol 141:267–275. doi:10.1007/BF00235136

    CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  • Hargather MJ, SS G (2007) Optical measurement and scaling of blasts from gram-range explosive charges. Shock waves 17:215–223. doi:10.1007/s00193-007-0108-8

    Article  Google Scholar 

  • Hauri AM, Armstrong GL, Hutin YJ (2004) The global burden of disease attributable to contaminated injections given in health care settings. Int J STD AIDS 15:7–16. doi:10.1258/095646204322637182

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn, vol. Academic Press, Ew York

  • Jagadeesh G, Kawagishi J, Takayama K, Takahashi A, Cole J, Reddy KPJ (2001) A new micro particle delivery system using laser ablation. In: L. F.K (ed) International symposium on shock waves, Forth Worth, TX, USA, p 859.

  • Jagadeesh G, Prakash GD, Rakesh SG, Allam US, Krishna MG, Eswarappa SM, Chakravortty D (2011) Needleless vaccine delivery using micro-shock waves. Clin Vaccine Immunol 18:539–545. doi:10.1128/CVI.00494-10

    Article  CAS  Google Scholar 

  • Kendall M (2002) The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system. Shock Waves 12:23–30. doi:10.1007/s001930200126

    Article  Google Scholar 

  • Kendall M, Quinlan NJ, Thorpe SJ, Ainsworth RW, Bellhouse BJ (1999) The gas-particle dynamics of a high-speed needle-free drug delivery system. International Symposium on shock waves, London, UK, pp 12–34

  • Klein RM, Wolf ED, Wu R, Sanford JC (1987) (1992) High-velocity microprojectiles for delivering nucleic acids into living cells. Biotechnology 24:384–386

    Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1992) High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Nature 327:70–73. doi:10.1038/327070a0

    Article  Google Scholar 

  • Kleine H, Timofeev E, Takayama K (2005a) Laboratory-scale blast wave phenomena—optical diagnostics and applications. Shock waves 14:343–357

    Article  Google Scholar 

  • Kleine H, Hiraki K, Maruyama H, Hayashida T, Yonai J, Kitamura K, Kondo Y, Etoh TG (2005b) High-speed time-resolved color schlieren visualization of shock wave phenomena. Shock waves 14:333–341. doi:10.1007/s00193-005-0273-6

    Article  Google Scholar 

  • Lauer U, Burgelt E, Squire Z, Messmer K, Hofschneider PH, Gregor M, Delius M (1997) Shock wave permeabilization as a new gene transfer method. Gene Ther 4:710–715

    Article  CAS  Google Scholar 

  • Liu Y (2007) Utilization of the venturi effect to introduce micro-particles for epidermal vaccination. Med Eng Phys 29:390–397. doi:10.1016/j.medengphy.2006.05.015

    Article  Google Scholar 

  • Mcauliffe DJ, Lee S, Flotte TJ, Doukas AG (1997) Stress-wave-assisted transport through the plasma membrane in vitro. Lasers Surg Med 20:216–222. doi:10.1002/(SICI)1096-9101

    Article  CAS  Google Scholar 

  • Menezes V, Takayama K, Ohki T, Gopalan J (2005) Laser-ablation-assisted microparticle acceleration for drug delivery. Appl Phy Let 87:163504–163504-3

    Article  Google Scholar 

  • Menezes V, Takayama K, Gojani A, Hosseini SHR (2008) Shock wave driven microparticles for pharmaceutical applications. Shock Waves 18:393–400. doi:10.1007/s00193-008-0163-9

    Article  Google Scholar 

  • Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935–947. doi:10.1038/nri2455

    Article  CAS  Google Scholar 

  • Mulholland SE, Lee S, Mcauliffe DJ, Doukas AG (1999) Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm Res 16:514–518. doi:10.1023/A:1018814911497

    Article  CAS  Google Scholar 

  • Mutsumi N, Viren M, Akira K, Hamid S, Hosseini R, Takayama K (2008) Shock wave based biolistic device for DNA and drug delivery. Jap J of App Phy 47:1522. doi:10.1143/JJAP.47.1522

    Article  Google Scholar 

  • Schramm-Baxter J, Katrencik J, Mitragotri S (2004) Jet injection into polyacrylamide gels: investigation of jet injection mechanics. J Biomech 37:1181–1188. doi:10.1016/j.jbiomech.2003.12.006

    Article  Google Scholar 

  • Soukos NS, Socransky SS, Mulholland SE, Lee S, Doukas AG (2000) Photomechanical drug delivery into bacterial biofilms. Pharm Res 17:405–409. doi:10.1023/A:1007568702118

    Article  CAS  Google Scholar 

  • Tadmor R (2001) The london-van der waals interaction energy between objects of various geometries. Journal of Physics: Condensed Matter 13:L195–L202. doi:10.1088/0953-8984/13/9/101

    Article  CAS  Google Scholar 

  • Terakawa M, Tsuda H, Ashida H, Sato S (2010) Assessment of tissue alteration in skin after interaction with photomechanical waves used for gene transfection. Lasers Surg Med 42:400–407. doi:10.1002/lsm.20928

    Article  Google Scholar 

  • Williams RS, Johnston SA, Riedy M, Devit MJ, Mcelligott SG, Sanford JC (1991) Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci U S A 88:2726–2730

    Article  CAS  Google Scholar 

  • Yang S, Huang R, Wang S, Gao Y, Fan Q (1995) An experimental study of temperature structure of shock relaxation in air-dusty explosive media. Shock Waves 5:121–123. doi:10.1007/BF02425044

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director and Associate Director, IISc, Bangalore for the funding to purchase high-speed camera. This work was supported by the grant, Provision (2A) Tenth Plan (191/MCB) from the Director of Indian Institute of Science, Bangalore, India, and Department of Biotechnology (DBT 197 and DBT 172) to D.C. Infrastructure support from ICMR (Center for Advanced Study in Molecular Medicine), DST (FIST) and UGC (special assistance) is acknowledged. We thank Namrata Iyer and Obed Samuelraj for critical comments. U.S.A. acknowledges U.G.C. for fellowship. We thank Central Animal facility for providing us with the animals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopalan Jagadeesh or Dipshikha Chakravortty.

Additional information

S.G. Rakesh and Divya Prakash Gnanadhas have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakesh, S.G., Gnanadhas, D.P., Allam, U.S. et al. Development of micro-shock wave assisted dry particle and fluid jet delivery system. Appl Microbiol Biotechnol 96, 647–662 (2012). https://doi.org/10.1007/s00253-012-4196-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4196-8

Keywords

Navigation