Skip to main content
Log in

Review on high efficiency and high precision compliant polishing method

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Complex precision components are integral to many sectors, straddling both military and civilian applications. These include aerospace telescopes, infrared thermal imaging systems, artificial intelligence, semiconductor chip lithography, medical imaging apparatus, and avant-garde communication technologies. These intricate precision components have become vital elements of the aforementioned optical systems, characterized by a wide range of extensive requirements totaling in the tens of millions. Within the realm of computer controlled optical surfacing (CCOS), high-efficiency bonnet polishing (BP) and high-precision magnetorheological finishing (MRF) are two compliant polishing methods with distinct advantages, extensively applied to ultra-precision machining of complex curved surface components. However, the bonnet polishing tool is prone to wear, the tool influence function is unstable, and the control process is complicated. The material removal efficiency of MRF is low; it easily introduces mid-spatial frequency (MSF) errors, and improving the performance of the magnetorheological fluid (MR fluid) is challenging. Therefore, summarizing these two techniques is essential to enhance the application of compliant polishing methods. The paper begins by examining the unique strengths of both technologies and then explores the potential for their integrated application. The paper then provides a detailed introduction to the origin, principles, equipment, and applications of BP. Next, the paper outlines the research progress of key technologies, including modeling of the tool influence function (TIF), management of MSF errors, and the wear of the bonnet tool within the realm of BP technology. Following that, the development history, technical principles, equipment, types, and compound methods of MRF are presented. Then, the research progress of several key technologies, such as modeling of TIF, controlling MSF error, and the preparation of MR fluid in the field of MRF technology, are reviewed. Lastly, the paper provides a summary and outlook for the two technologies, such as further in-depth study of the material removal mechanism and the suppression method of the edge effect in BP, a further in-depth study of methods to improve the material removal rate, and MSF error suppression methods in MRF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Guan F (2018) Research on key techniques of lap magnetorheological finishing. Dissertation, National University of Defense Technology, Changsha, China (In Chinese)

  2. Moses EI (2003) The National Ignition Facility: the world’s largest laser. In: Proceedings of the 20th IEEE/NPSS Symposium onFusion Engineering 2003. IEEE, Piscataway, pp 413–418. https://doi.org/10.1109/FUSION.2003.1426672

    Chapter  Google Scholar 

  3. Moses EI (2010) Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Eng Des 85(7):983–986. https://doi.org/10.1016/j.fusengdes.2009.11.006

    Article  Google Scholar 

  4. Campbell J, Hawley-Fedder R, Stolz C, Menapace J, Borden M, Whitman P, Yu J, Runkel M, Riley M, Feit M, Hackel R (2004) NIF optical materials and fabrication technologies: an overview. Proc SPIE 5341:84–101. https://doi.org/10.1117/12.538471

    Article  Google Scholar 

  5. Miller G, Moses E, Wuest C (2004) The National Ignition Facility: enabling fusion ignition for the 21st century. Nucl Fusion 44(12):S228–S238. https://doi.org/10.1088/0029-5515/44/12/S14

    Article  Google Scholar 

  6. Cao C (2004) Study on ultra-precision continuous polishing of large aperture optical components. Dissertation, Sichuan University, Chengdu, China (In Chinese)

  7. Zheng WG, Wei XF, Zhu QH, Jing F, Hu DX, Zhang XM, Su JQ, Zheng KX, Wang CC, Yuan XD, Zhou H, Chen B, Wang J, Xu Q, Yang LM, Dai WJ, Zhou W, Wang F, Xu DP, Xie XD, Feng B, Peng ZT, Guo LF, Chen YB, Zhang XJ, Liu LQ, Lin DH, Dang Z, Xiang Y, Chen XD, Zhang WY (2016) SG-III laser facility has successfully achieved 60 TW/180 kJ ultraviolet laser (351 nm) output. High Power Laser Part Beams 28(1):019901. https://doi.org/10.11884/HPLPB201628.019901. (In Chinese)

    Article  Google Scholar 

  8. Extremely Large Telescope (2024). http://www.eelt.org.uk/. Accessed 24 Feb 2024

  9. Ramsay S, Odorico SD, Casali M, González JC, Hubin N, Kasper M, Käufl HU, Kissler-Patig M, Marchetti E, Paufique J, Pasquini L, Siebenmorgen R, Richichi A, Vernet J, Zerbi FM (2010) An overview of the E-ELT instrumentation programme. Proc SPIE 7735:773524. https://doi.org/10.1117/12.857037

    Article  Google Scholar 

  10. Webb Space Telescope (2024). http://jwst.nasa.gov/. Accessed 24 Feb 2024

  11. Clampin M (2014) Recent progress with the JWST Observatory. Proc SPIE 9143:914302. https://doi.org/10.1117/12.2057537

    Article  Google Scholar 

  12. Lowisch M, Kuerz P, Conradi O, Wittich G, Seitz W, Kaiser W (2013) Optics for ASML’s NXE:3300B platform. Proc SPIE 8679:86791H. https://doi.org/10.1117/12.2012158

    Article  Google Scholar 

  13. Kurz P, Mann HJ, Antoni M, Singer W, Muhlbeyer M, Melzer F, Dinger U, Weiser M, Stacklies S, Seitz G, Haidl F, Sohmen E, Kaiser W (2000) Optics for EUV lithography. In: Proceedings of the 2000 International Microprocesses and Nanotechnology Conference. IEEE, Piscataway, p 264. https://doi.org/10.1109/IMNC.2000.872750

    Chapter  Google Scholar 

  14. Cheng H, Dong Z, Ye X, Tam HY (2014) Subsurface damages of fused silica developed during deterministic small tool polishing. Opt Express 22(15):18588–18603. https://doi.org/10.1364/OE.22.018588

    Article  Google Scholar 

  15. Liu HT (2014) Kev technique compyter controlled active lap in fabrication of large aspherics. Dissertation, Institute of Optics And Electronics, Chinese Academy of Sciences, Chengdu, China (In Chinese)

  16. Peng XQ, Yang C, Hu H, Dai YF (2017) Measurement and algorithm for localization of aspheric lens in magnetorheological finishing. Int J Adv Manuf Technol 88(9):2889–2897. https://doi.org/10.1007/s00170-016-9001-x

    Article  Google Scholar 

  17. Beaucamp A, Katsuura T, Kawara Z (2017) A novel ultrasonic cavitation assisted fluid jet polishing system. CIRP Ann Manuf Technol 66(1):301–304. https://doi.org/10.1016/j.cirp.2017.04.083

    Article  Google Scholar 

  18. Wang CJ, Cheung CF, Ho LT, Liu MY, Lee WB (2017) A novel multi-jet polishing process and tool for high-efficiency polishing. Int J Mach Tools Manuf 115:60–73. https://doi.org/10.1016/j.ijmachtools.2016.12.006

    Article  Google Scholar 

  19. Bauer J, Frost F, Arnold T (2017) Reactive ion beam figuring of optical aluminium surfaces. J Phys D Appl Phys 50(8):085101. https://doi.org/10.1088/1361-6463/50/8/085101

    Article  Google Scholar 

  20. Wang CJ (2015) Research on high efficiency polishing on large size optics using a semirigid bonnet. Dissertation, Xiamen University, Xiamen, China (In Chinese)

  21. Pan R (2014) Research on high efficiency and controllable bonnet polishing technology for large aspheric surface. Dissertation, Xiamen University, Xiamen, China (In Chinese)

  22. Jiang T (2015) Research on the mid spatial frequency error control technology of large-diameter high-efficiency bonnet polishing. Dissertation, Xiamen University, Xiamen, China (In Chinese)

  23. Zhang F, Zhang XJ, Yu JC, Wang QD, Guo PJ (2000) Foundation of mathematics model of magnetorheological finishing. Opt Tech 26(2):190–192. https://doi.org/10.13741/j.cnki.11-1879/o4.2000.02.032. (In Chinese)

    Article  Google Scholar 

  24. Peng XQ, Dai YF, Li SY (2004) Material removal model of magnetorheological finishing. J Mech Eng 40(4):67–70. https://doi.org/10.3321/j.issn:0577-6686.2004.04.013. (In Chinese)

    Article  Google Scholar 

  25. Zhang F (2000) Study on technique of magnetorheological finishing. Dissertation, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China (In Chinese)

  26. Peng XQ (2004) Study on the key techniques of deterministic magnetorheological finishing. Dissertation, National University of Defense Technology, Changsha, China (In Chinese)

  27. Zhu WL, Beaucamp A (2020) Compliant grinding and polishing: a review. Int J Mach Tools Manuf 158:103634. https://doi.org/10.1016/j.ijmachtools.2020.103634

    Article  Google Scholar 

  28. Peng Y, Shen B, Wang Z, Yang P, Yang W, Bi G (2021) Review on polishing technology of small-scale aspheric optics. Int J Adv Manuf Technol 115(4):965–987. https://doi.org/10.1007/s00170-021-07202-3

    Article  Google Scholar 

  29. Wu Z, Shen J, Peng Y, Wu X (2022) Review on ultra-precision bonnet polishing technology. Int J Adv Manuf Technol 121(5):2901–2921. https://doi.org/10.1007/s00170-022-09501-9

    Article  Google Scholar 

  30. Wang W, Ji S, Zhao J (2023) Review of magnetorheological finishing on components with complex surfaces. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-11611-x

    Article  Google Scholar 

  31. Bingham R, Walker D, Kim DH, Brooks D, Freeman R, Riley D (2000) Novel automated process for aspheric surfaces. Proc SPIE 4093:445–450. https://doi.org/10.1117/12.405237

    Article  Google Scholar 

  32. Walker D, Brooks D, Freeman R, King A, Mccavana G, Morton R, Riley D, Simms J (2001) First aspheric form and texture results from a production machine embodying the precession process. Proc SPIE 4451:267–276. https://doi.org/10.1117/12.453652

    Article  Google Scholar 

  33. Walker D, Freeman R, Mccavana G, Morton R, Riley D, Simms J, Brooks D, Kim E, King A (2002) Zeeko/UCL process for polishing large lenses and prisms. Proc SPIE 4411:106–111. https://doi.org/10.1117/12.454877

    Article  Google Scholar 

  34. Walker DD, Brooks D, King A, Freeman R, Morton R, Mccavana G, Kim SW (2003) The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opt Express 11(8):958–964. https://doi.org/10.1364/OE.11.000958

    Article  Google Scholar 

  35. Walker D, Yu G, Li H, Messelink W, Evans R, Beaucamp A (2012) Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface. Opt Express 20(18):19787–19798. https://doi.org/10.1364/OE.20.019787

    Article  Google Scholar 

  36. Li H, Walker D, Yu G, Sayle A, Messelink W, Evans R, Beaucamp A (2013) Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges. Opt Express 21(1):370–381. https://doi.org/10.1364/OE.21.000370

    Article  Google Scholar 

  37. Charlton P (2011) The application of Zeeko polishing technology to freeform femoral knee replacement component manufacture. Dissertation, University of Huddersfield, Huddersfield

  38. Zeng S, Blunt L (2014) An experimental study on the correlation of polishing force and material removal for bonnet polishing of cobalt chrome alloy. Int J Adv Manuf Technol 73(1):185–193. https://doi.org/10.1007/s00170-014-5801-z

    Article  Google Scholar 

  39. Gao B, Xie DG, Yao YX, Yuan ZJ (2004) New technology of ballonet tool for polishing. Opt Tech 30(3):333–336. https://doi.org/10.3321/j.issn:1002-1582.2004.03.002. (In Chinese)

    Article  Google Scholar 

  40. Song JF (2009) Research on the optimization of the process parameters and its correlative technology in bonnet polishing the curved optical parts. Dissertation, Harbin Institute of Technology, Harbin, China (In Chinese)

  41. Beaucamp A, Namba Y (2013) Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Ann 62(1):315–318. https://doi.org/10.1016/j.cirp.2013.03.010

    Article  Google Scholar 

  42. Su X, Ji P, Jin Y, Li D, Walker D, Yu G, Li H, Wang B (2019) Simulation and experimental study on form-preserving capability of bonnet polishing for complex freeform surfaces. Precis Eng 60:54–62. https://doi.org/10.1016/j.precisioneng.2019.07.010

    Article  Google Scholar 

  43. Zhang W, Li HY, Yu GY (2009) Current situation of ultra-precision bonnet polishing key technology of optical elements. Acta Opt Sin 29(1):27–34. https://doi.org/10.3788/aos20092901.0027. (In Chinese)

    Article  Google Scholar 

  44. Walker D, Beaucamp A, Bingham R, Brooks D, Freeman R, Kim S, King A, Mccavana G, Morton R, Riley D, Simms J (2003) Precessions process for efficient production of aspheric optics for large telescopes and their instrumentation. Proc SPIE 4842:73–84. https://doi.org/10.1117/12.456677

    Article  Google Scholar 

  45. Gao B, Yao YX, Xie DG, Yuan ZJ (2006) Movement modeling and simulation of precession mechanisms for bonnet tool polishing. J Mech Eng 42(2):101–104. https://doi.org/10.3321/j.issn:0577-6686.2006.02.019. (In Chinese)

    Article  Google Scholar 

  46. Ji SM, Ao HP, Jin MS, Zhang L, Zeng X, Ding JJ (2012) Experiment research of mould curved surface of gasbag polishing based on optimizing the contact characteristics. J Mech Electr Eng 29(12):1367–1370, 1375 (In Chinese)

  47. Guo YB, Peng YF, Wang ZZ, Bi G, Yang W, Yang P (2018) Development and application of precision grinding/polishing and measurement equipment for large-size optical components. Aeronaut Manuf Technol 61(6):26–35. https://doi.org/10.16080/j.issn1671-833x.2018.06.026. (In Chinese)

    Article  Google Scholar 

  48. He JK (2023) Research on key technologies of magnetorheological precession polishing processing. Dissertation, Xiamen University, Xiamen, China (In Chinese)

  49. Walker D, Beaucamp ATH, Doubrovski V, Dunn C, Freeman R, Mccavana G, Morton R, Riley D, Simms J, Wei X (2005) New results extending the Precessions process to smoothing ground aspheres and producing freeform parts. Proc SPIE 5869:58690E. https://doi.org/10.1117/12.617067

    Article  Google Scholar 

  50. Gao B, Yao YX, Xie DG, Yuan ZJ, Liu Y (2004) Development and property test of bonnet polishing tool. Mod Manuf Eng 27(10):52–54. https://doi.org/10.16731/j.cnki.1671-3133.2004.10.023. (In Chinese)

    Article  Google Scholar 

  51. Jin MS (2009) Gasbag polishing mechanism and process on free-form surface mould. Dissertation, Zhejiang University of Technology, Hangzhou, China (In Chinese)

  52. Yu G, Li H, Walker D (2011) Removal of mid spatial-frequency features in mirror segments. J Eur Opt Soc-Rapid Publ 6:11044. https://doi.org/10.2971/jeos.2011.11044

    Article  Google Scholar 

  53. Yu G, Walker D, Li H (2012) Implementing a grolishing process in Zeeko IRP machines. Appl Opt 51(27):6637–6640. https://doi.org/10.1364/AO.51.006637

    Article  Google Scholar 

  54. Beaucamp A, Namba Y, Combrinck H, Charlton P, Freeman R (2014) Shape adaptive grinding of CVD silicon carbide. CIRP Ann 63(1):317–320. https://doi.org/10.1016/j.cirp.2014.03.019

    Article  Google Scholar 

  55. Beaucamp A, Simon P, Charlton P, King C, Matsubara A, Wegener K (2017) Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. Int J Mach Tools Manuf 115:29–37. https://doi.org/10.1016/j.ijmachtools.2016.11.006

    Article  Google Scholar 

  56. Wang C, Wang Z, Wang Q, Ke X, Zhong B, Guo Y, Xu Q (2017) Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics. Int J Adv Manuf Technol 88(5):1607–1617. https://doi.org/10.1007/s00170-016-8901-0

    Article  Google Scholar 

  57. Wang C, Yang W, Wang Z, Yang X, Sun Z, Zhong B, Pan R, Yang P, Guo Y, Xu Q (2014) Highly efficient deterministic polishing using a semirigid bonnet. Opt Eng 53(9):095102. https://doi.org/10.1117/1.OE.53.9.095102

    Article  Google Scholar 

  58. Kong L (2016) Technology research on silicone bonnet elastic polishing. Dissertation, Changchun University of Science and Technology, Changchun, China (In Chinese)

  59. Zhu WL, Beaucamp A (2020) Non-Newtonian fluid based contactless sub-aperture polishing. CIRP Ann 69(1):293–296. https://doi.org/10.1016/j.cirp.2020.04.093

    Article  Google Scholar 

  60. Huang X, Wang Z, Li L (2023) Study on the impact of positioning errors on the process performance of robotic bonnet polishing. Int J Precis Eng Manuf 24(9):1587–1598. https://doi.org/10.1007/s12541-023-00882-9

    Article  Google Scholar 

  61. Pan R, Hu C, Xie Y, Fan J, Wang Z, Liu Z (2024) Study on optimization of process parameters in dressing of bonnet polishing tool. Proc Inst Mech Eng Part B J Eng Manuf 238(1–2):187–198. https://doi.org/10.1177/09544054221150663

    Article  Google Scholar 

  62. Walker D, Beaucamp A, Brooks D, Doubrovski V, Cassie M, Dunn C, Freeman R, King A, Libert M, Mccavana G, Morton R, Riley D, Simms J (2004) New results from the Precessions polishing process scaled to larger sizes. Proc SPIE 5494:71–80. https://doi.org/10.1117/12.553044

    Article  Google Scholar 

  63. Beaucamp A, Namba Y, Inasaki I, Combrinck H, Freeman R (2011) Finishing of optical moulds to λ/20 by automated corrective polishing. CIRP Ann 60(1):375–378. https://doi.org/10.1016/j.cirp.2011.03.110

    Article  Google Scholar 

  64. Cheung CF, Kong LB, Ho LT, To S (2011) Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing. Precis Eng 35(4):574–590. https://doi.org/10.1016/j.precisioneng.2011.04.001

    Article  Google Scholar 

  65. Walker D, Beaucamp A, Dunn C, Freeman R, Marek A, Mccavana G, Morton R, Riley D (2004) First results on free-form polishing using the Precessions process. In: Proceedings of ASPE Winter Topical Meeting: Freeform Optics, Design, Fabrication, Metrology, Assembly. ASPE, Raleigh, pp 29–34

  66. Beaucamp A, Namba Y, Charlton P (2014) Corrective finishing of extreme ultraviolet photomask blanks by precessed bonnet polisher. Appl Opt 53(14):3075–3080. https://doi.org/10.1364/AO.53.003075

    Article  Google Scholar 

  67. Zhu WL, Anthony B (2020) Investigation of critical material removal transitions in compliant machining of brittle ceramics. Mater Des 185:108258. https://doi.org/10.1016/j.matdes.2019.108258

    Article  Google Scholar 

  68. Yuan JL, Wu Z, Lv BH, Ruan DN, Lu HZ, Zhao P (2012) Review on ultra-precision polishing technology of aspheric surface. J Mech Eng 48(23):167–177. https://doi.org/10.3901/jme.2012.23.167. (In Chinese)

    Article  Google Scholar 

  69. Li C, Piao Y, Zhang F, Zhang Y, Hu Y, Wang Y (2023) Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals. Int J Extreme Manuf 5(1):015101. https://doi.org/10.1088/2631-7990/ac9eed

    Article  Google Scholar 

  70. Li C, Piao Y, Meng B, Hu Y, Li L, Zhang F (2022) Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int J Mach Tools Manuf 172:103827. https://doi.org/10.1016/j.ijmachtools.2021.103827

    Article  Google Scholar 

  71. Kim DW, Kim SW (2005) Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes. Opt Express 13(3):910–917. https://doi.org/10.1364/OPEX.13.000910

    Article  Google Scholar 

  72. Cao ZC, Cheung CF (2016) Multi-scale modeling and simulation of material removal characteristics in computer-controlled bonnet polishing. Int J Mech Sci 106:147–156. https://doi.org/10.1016/j.ijmecsci.2015.12.011

    Article  Google Scholar 

  73. Pan R, Zhong B, Chen D, Wang Z, Fan J, Zhang C, Wei S (2018) Modification of tool influence function of bonnet polishing based on interfacial friction coefficient. Int J Mach Tools Manuf 124:43–52. https://doi.org/10.1016/j.ijmachtools.2017.09.003

    Article  Google Scholar 

  74. Shi C, Peng Y, Hou L, Wang Z, Guo Y (2018) Micro-analysis model for material removal mechanisms of bonnet polishing. Appl Opt 57(11):2861–2872. https://doi.org/10.1364/AO.57.002861

    Article  Google Scholar 

  75. Walker D, Beaucamp A, Bingham R, Brooks D, Freeman R, Kim S, King A, Mccavana G, Morton R, Riley D, Simms J (2004) Precessions aspheric polishing: new results from the development program. Proc SPIE 5180:15–28. https://doi.org/10.1117/12.507462

    Article  Google Scholar 

  76. Walker D, Beaucamp A, Brooks D, Doubrovski V, Cassie M, Dunn C, Freeman R, King A, Libert M, Mccavana G, Morton R, Riley D, Simms J (2004) Recent developments of Precessions polishing for larger components and free-form surfaces. Proc SPIE 5523:281–289. https://doi.org/10.1117/12.559531

    Article  Google Scholar 

  77. Kim DW, Kim SW, Burge JH (2009) Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions. Opt Express 17(24):21850–21866. https://doi.org/10.1364/OE.17.021850

    Article  Google Scholar 

  78. Jin M, Ji S, Zhang L, Yuan Q, Zhang X, Zhang Y (2008) Material removal model and contact control of robotic gasbag polishing technique. In: Proceedings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics. IEEE, Piscataway, pp 879–883

  79. Wang C, Wang Z, Yang X, Sun Z, Peng Y, Guo Y, Xu Q (2014) Modeling of the static tool influence function of bonnet polishing based on FEA. Int J Adv Manuf Technol 74(1):341–349. https://doi.org/10.1007/s00170-014-6004-3

    Article  Google Scholar 

  80. Wang CJ, Guo YB, Wang ZZ, Pan R, Xie YH (2013) Dynamic removal function modeling of bonnet tool polishing on optics elements. J Mech Eng 49(17):19–25. https://doi.org/10.3901/jme.2013.17.019. (In Chinese)

    Article  Google Scholar 

  81. Wan S, He X, Zhang X, Xu M (2016) Effect of feed velocity change on amount of material removal for free abrasive polishing with sub-aperture pad. Proc SPIE 10154:1015401. https://doi.org/10.1117/12.2243430

    Article  Google Scholar 

  82. Zhong B, Wang C, Chen X, Wang J (2019) Time-varying tool influence function model of bonnet polishing for aspheric surfaces. Appl Opt 58(4):1101–1109. https://doi.org/10.1364/AO.58.001101

    Article  Google Scholar 

  83. Han Y, Zhu WL, Zhang L, Beaucamp A (2020) Region adaptive scheduling for time-dependent processes with optimal use of machine dynamics. Int J Mach Tools Manuf 156:103589. https://doi.org/10.1016/j.ijmachtools.2020.103589

    Article  Google Scholar 

  84. Yang L (2001) Advanced optical fabrication technologies. Science Press, Beijing, China (In Chinese)

    Google Scholar 

  85. Li H, Zhang W, Walker D, Yu G (2014) Active edge control in the precessions polishing process for manufacturing large mirror segments. Proc SPIE 9280:928007. https://doi.org/10.1117/12.2069790

    Article  Google Scholar 

  86. Walker D, Beaucamp A, Dunn C, Evans R, Freeman R, Morton R, Wei S, Yu G (2008) Active control of edges and global microstructure on segmented mirrors. Proc SPIE 7018:701812. https://doi.org/10.1117/12.787930

    Article  Google Scholar 

  87. Wang W, Xu M, Yu G (2010) Research on edge control in the process of polishing using ultra precise bonnet on optical elements. Proc SPIE 7654:76540N. https://doi.org/10.1117/12.866699

    Article  Google Scholar 

  88. Ke X, Qiu L, Wang C, Wang Z (2020) Tentative investigations on reducing the edge effects in pre-polishing the optics. Appl Sci 10(15):5286. https://doi.org/10.3390/app10155286

    Article  Google Scholar 

  89. Yin L, Hu H, Guan C, Dai Y, Li Z (2021) Edge control in the computer-controlled optical surface. Micromachines 12(10):1154. https://doi.org/10.3390/mi12101154

    Article  Google Scholar 

  90. Walker D, Baldwin A, Evans R, Freeman R, Hamidi S, Shore P, Tonnellier X, Wei S, Williams C, Yu G (2007) A quantitative comparison of three grolishing techniques for the Precessions process. Proc SPIE 6671:66711H. https://doi.org/10.1117/12.735488

    Article  Google Scholar 

  91. Zhong B, Chen XH, Li J, Wen ZJ (2018) Effect of precession mode on the surface error of optical components in bonnet polishing. Proc SPIE 10847:1084707. https://doi.org/10.1117/12.2503980

    Article  Google Scholar 

  92. Huang WR, Tsai TY, Lin YJ, Kuo CH, Yu ZR, Ho CF, Hsu WY, Young HT (2020) Experimental investigation of mid-spatial frequency surface textures on fused silica after computer numerical control bonnet polishing. Int J Adv Manuf Technol 108(5):1367–1380. https://doi.org/10.1007/s00170-020-05388-6

    Article  Google Scholar 

  93. Rao M, Zhang Y, Wang H, Ming H, Zhao Y, Zhu J (2023) Towards modeling and restraining surface ripples during bonnet polishing based on frequency domain characteristic control. CIRP Ann 72(1):493–496. https://doi.org/10.1016/j.cirp.2023.04.079

    Article  Google Scholar 

  94. Zhang L, Han Y, Fan C, Tang Y, Song X (2017) Polishing path planning for physically uniform overlap of polishing ribbons on freeform surface. Int J Adv Manuf Technol 92(9):4525–4541. https://doi.org/10.1007/s00170-017-0466-z

    Article  Google Scholar 

  95. Cho U, Eom D, Lee D, Park J (1992) A flexible polishing robot system for die and mould. In: Proceedings of the 23rd International Symposium on Industrial Robots. pp 449–456

  96. Pessoles X, Tournier C (2009) Automatic polishing process of plastic injection molds on a 5-axis milling center. J Mater Process Technol 209(7):3665–3673. https://doi.org/10.1016/j.jmatprotec.2008.08.034

    Article  Google Scholar 

  97. Tsai MJ, Huang JF (2006) Efficient automatic polishing process with a new compliant abrasive tool. Int J Adv Manuf Technol 30(9):817–827. https://doi.org/10.1007/s00170-005-0126-6

    Article  Google Scholar 

  98. Mizugaki Y, Sakamoto M, Sata T (1992) Fractal path generation for a metal-mold polishing robot system and its evaluation by the operability. CIRP Ann 41(1):531–534. https://doi.org/10.1016/S0007-8506(07)61261-X

    Article  Google Scholar 

  99. Tam HY, Cheng H, Dong Z (2013) Peano-like paths for subaperture polishing of optical aspherical surfaces. Appl Opt 52(15):3624–3636. https://doi.org/10.1364/AO.52.003624

    Article  Google Scholar 

  100. Dong Z, Cheng H, Tam HY (2014) Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors. Appl Opt 53(3):327–334. https://doi.org/10.1364/AO.53.000327

    Article  Google Scholar 

  101. Dunn CR, Walker DD (2008) Pseudo-random tool paths for CNC sub-aperture polishing and other applications. Opt Express 16(23):18942–18949. https://doi.org/10.1364/OE.16.018942

    Article  Google Scholar 

  102. Takizawa K, Beaucamp A (2017) Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths. Opt Express 25(19):22411–22424. https://doi.org/10.1364/OE.25.022411

    Article  Google Scholar 

  103. Zhao Q, Zhang L, Fan C (2019) Six-directional pseudorandom consecutive unicursal polishing path for suppressing mid-spatial frequency error and realizing consecutive uniform coverage. Appl Opt 58(31):8529–8541. https://doi.org/10.1364/AO.58.008529

    Article  Google Scholar 

  104. Dunn C, Walker DD, Beaucamp A, Kelchner J, Freeman R (2008) Improving surface PSD using a random tool path. In: Optical Fabrication and Testing 2008. Optica Publishing Group, Washington, DC, p OThB5

  105. Zhang LP, Yang H, Bao LX, Li J (2014) Optimization of dwell time algorithm for precession bonnet polishing. Opt Precis Eng 22(12):3303–3309. https://doi.org/10.3788/ope.20142212.3303. (In Chinese)

    Article  Google Scholar 

  106. Wang W (2020) Study on removal function and algorithm of bonnet figuring for X-ray focusing mirror mold. Dissertation, Harbin Institute of Technology, Harbin, China (In Chinese)

  107. Li QS, Cheng Y, Cai FZ, Feng ZJ, Zhang BP (1999) Dwell time algorithm in computer controlled optical surfacing. Opt Tech 25(3):57–60, 63. https://doi.org/10.3321/j.issn:1002-1582.1999.03.004 (In Chinese)

  108. Han Y, Wu F, Wan YJ (2009) Dwell time algorithms for computer controlled optical surfacing technology. In: Proceedings of the 2009 Advanced Optical Technology and Its Applications Symposium. Photoelectronic Technology Professional Committee, Chinese Society Astronautics, Beijing, pp 73–76 (In Chinese)

  109. Wang C, Yang W, Wang Z, Yang X, Hu C, Zhong B, Guo Y, Xu Q (2014) Dwell-time algorithm for polishing large optics. Appl Opt 53(21):4752–4760. https://doi.org/10.1364/AO.53.004752

    Article  Google Scholar 

  110. Zhang YF, Wang Y, Wang YJ, He JG, Ji F (2010) Dwell time algorithm based on optimization theory for magnetorheological finishing. J Appl Opt 31(4):657–662. https://doi.org/10.3969/j.issn.1002-2082.2010.04.031. (In Chinese)

    Article  Google Scholar 

  111. Lee S (2018) Modeling and experimental invsetigation for the removal function of silicon-based material related on the temperature effect using APPP (Atmospheric pressure plasma polishing). Dissertation, Harbin Institute of Technology, Harbin, China (In Chinese)

  112. Zhang L, Zhao Q, Fan C (2021) Dwell time algorithm in deterministic polishing of a free-form surface based on the continuous tool influence function. Appl Opt 60(9):2704–2715. https://doi.org/10.1364/AO.418409

    Article  Google Scholar 

  113. Su YT, Hung TC, Horng CC (2000) An experimental study on tool wear of hydrodynamic polishing process. Wear 246(1):117–129. https://doi.org/10.1016/S0043-1648(00)00497-X

    Article  Google Scholar 

  114. Park K, Oh J, Jeong H (2008) Pad characterization and experimental analysis of pad wear effect on material removal uniformity in chemical mechanical polishing. Jpn J Appl Phys 47(10):7812–7817. https://doi.org/10.1143/JJAP.47.7812

    Article  Google Scholar 

  115. Belkhir N, Bouzid D, Herold V (2012) Morphological behavior and wear of polyurethane pads used in glass polishing process. Precis Eng 36(4):641–649. https://doi.org/10.1016/j.precisioneng.2012.05.006

    Article  Google Scholar 

  116. Quinsat Y, Guiot A, Tournier C (2015) Tool wear modelling for constant removal rate in two-bodies automated polishing. Int J Abras Technol 7(2):73–89. https://doi.org/10.1504/IJAT.2015.073803

    Article  Google Scholar 

  117. Zhong B, Chen X, Pan R, Wang J, Huang H, Deng W, Wang Z, Xie R, Liao D (2017) The effect of tool wear on the removal characteristics in high-efficiency bonnet polishing. Int J Adv Manuf Technol 91(9):3653–3662. https://doi.org/10.1007/s00170-017-0015-9

    Article  Google Scholar 

  118. Pan R, Zhong B, Wang Z, Ji S, Chen D, Fan J (2018) Influencing mechanism of the key parameters during bonnet polishing process. Int J Adv Manuf Technol 94(1):643–653. https://doi.org/10.1007/s00170-017-0870-4

    Article  Google Scholar 

  119. Shi C, Peng Y, Hou L, Wang Z, Guo Y (2018) Improved analysis model for material removal mechanisms of bonnet polishing incorporating the pad wear effect. Appl Opt 57(25):7172–7186. https://doi.org/10.1364/AO.57.007172

    Article  Google Scholar 

  120. Zhang Y, Feng J, Zhao Y, Rao M, Yin Y (2023) Towards understanding and restraining the mechanical relaxation effect in polishing silicon carbide with a detachable bonnet tool. Int J Mech Sci 246:107962. https://doi.org/10.1016/j.ijmecsci.2022.107962

    Article  Google Scholar 

  121. Zhong B (2018) Material removal stability of the sub-aperture polishing for large aspheric surface. Dissertation, University of Electronic Science and Technology of China, Chengdu, China (In Chinese)

  122. Wang Z, Wang Q, Yang X, Chen S, Zhuang X, Peng Y (2017) Dressing scheme and process parameters analysis for bonnet tool in bonnet polishing. Proc Inst Mech Eng Part C J Mech Eng Sci 231(19):3569–3578. https://doi.org/10.1177/0954406216647754

    Article  Google Scholar 

  123. Kordonski WI, Jacobs SD (1996) Magnetorheological finishing. Int J Mod Phys B 10(23–24):2837–2848. https://doi.org/10.1142/S0217979296001288

    Article  Google Scholar 

  124. Harris D (2011) History of magnetorheological finishing. Proc SPIE 8016:80160N. https://doi.org/10.1117/12.882557

    Article  Google Scholar 

  125. Jacobs S, Golini D, Hsu Y, Puchebner B, Strafford D, Kordonski W, Prokhorov I, Fess E, Pietrowski D, Kordonski V (1995) Magnetorheological finishing: a deterministic process for optics manufacturing. Proc SPIE 2576:372–382. https://doi.org/10.1117/12.215617

    Article  Google Scholar 

  126. Golini D, Kordonski W, Dumas P, Hogan S (1999) Magnetorheological finishing (MRF) in commercial precision optics manufacturing. Proc SPIE 3782:80–91. https://doi.org/10.1117/12.369174

    Article  Google Scholar 

  127. Jacobs S, Yang F, Fess E, Feingold J, Gillman B, Kordonski W, Edwards H, Golini D (1997) Magnetorheological finishing of IR materials. Proc SPIE 3134:258–269. https://doi.org/10.1117/12.295132

    Article  Google Scholar 

  128. Arrasmith S, Kozhinova I, Gregg L, Shorey A, Romanofsky H, Jacobs S, Golini D, Kordonski W, Hogan S, Dumas P (1999) Details of the polishing spot in magnetorheological finishing (MRF). Proc SPIE 3782:92–100. https://doi.org/10.1117/12.369175

    Article  Google Scholar 

  129. Shi F, Qiao S, Deng M, Song C, Tie G, Tian Y, Hao Q, Wang S, Zhou H, Chen J, Sun G, Shen X (2022) Small-scale cluster damage mitigation and detection on fused silica surface. Infrared Laser Eng 51(9):20220539. https://doi.org/10.3788/irla20220539(InChinese)

    Article  Google Scholar 

  130. Song C (2012) Study on the key techniques of magnetorheological finishing for off-axis aspheric optical elements. Dissertation, National University of Defense Technology, Changsha, China (In Chinese)

  131. Sato T, Kum CW, Venkatesh VC (2013) Rapid magneto-rheological finishing of Ti-6Al-4V for aerospace components. Int J Nanomanuf 9(5–6):431–445. https://doi.org/10.1504/IJNM.2013.057590

    Article  Google Scholar 

  132. Ashtiani M, Hashemabadi SH, Ghaffari A (2015) A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater 374:716–730. https://doi.org/10.1016/j.jmmm.2014.09.020

    Article  Google Scholar 

  133. Yadav RD, Singh AK (2019) A novel magnetorheological gear profile finishing with high shape accuracy. Int J Mach Tools Manuf 139:75–92. https://doi.org/10.1016/j.ijmachtools.2019.02.001

    Article  Google Scholar 

  134. Zhang X, Li L, Xue D, Song C, Ai B (2019) Development and application of MRF based on robot arm. EPJ Web Conf 215:06001. https://doi.org/10.1051/epjconf/201921506001

    Article  Google Scholar 

  135. Li L, Zhang J, Song C, Zhang X, Yin X, Xue D (2019) New generation magnetorheological finishing polishing machines using robot arm. Proc SPIE 11341:1134118. https://doi.org/10.1117/12.2544325

    Article  Google Scholar 

  136. Guan F, Hu H, Li S, Peng X, Shi F (2018) Analysis of material removal rate and stability in lap-magnetorheological finishing. Opt Eng 57(5):055107. https://doi.org/10.1117/1.OE.57.5.055107

    Article  Google Scholar 

  137. Pan JS, Yan QS, Lu JB, Xu XP, Chen SK (2014) Cluster magnetorheological effect plane polishing technology. J Mech Eng 50(1):205–212. https://doi.org/10.3901/JME.2014.01.205. (In Chinese)

    Article  Google Scholar 

  138. Wang YQ, Yin SH, Huang H, Chen FJ, Deng GJ (2015) Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization. Precis Eng 40:309–317. https://doi.org/10.1016/j.precisioneng.2014.11.001

    Article  Google Scholar 

  139. Singh AK, Jha S, Pandey PM (2011) Design and development of nanofinishing process for 3D surfaces using ball end MR finishing tool. Int J Mach Tools Manuf 51(2):142–151. https://doi.org/10.1016/j.ijmachtools.2010.10.002

    Article  Google Scholar 

  140. Zhang J, Chen MJ, Li D, Liu HN, Wang TZ (2017) Magnetorheological polishing method and application of complex structure of thin-walled parts with small diameter permanent magnetic ball. Aviat Precis Manuf Technol 53(4):16–19. https://doi.org/10.3969/j.issn.1003-5451.2017.04.005. (In Chinese)

    Article  Google Scholar 

  141. Aggarwal A, Singh AK (2023) Magnetorheological finishing of ball-cup surface using new tool to enhance ball-transfer-unit performance. Mater Manuf Process 38(10):1226–1242. https://doi.org/10.1080/10426914.2022.2089889

    Article  Google Scholar 

  142. Yin SH, Gong S, He BW, Chen FJ, Yin ZQ, Cao CG (2018) Development on synergistic process and machine tools integrated inclined axis grinding and magnetorheological polishing for small aspheric surface. J Mech Eng 54(21):205–211. https://doi.org/10.3901/jme.2018.21.205. (In Chinese)

    Article  Google Scholar 

  143. Guan F, Hu H, Li S, Liu Z, Peng X, Shi F (2018) A novel Lap-MRF method for large aperture mirrors. Int J Adv Manuf Technol 95(9):4645–4657. https://doi.org/10.1007/s00170-017-1498-0

    Article  Google Scholar 

  144. Pan J, Yan Q (2015) Material removal mechanism of cluster magnetorheological effect in plane polishing. Int J Adv Manuf Technol 81(9):2017–2026. https://doi.org/10.1007/s00170-015-7332-7

    Article  Google Scholar 

  145. Luo H, Guo M, Yin S, Chen F, Huang S, Lu A, Guo Y (2018) An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl Surf Sci 444:569–577. https://doi.org/10.1016/j.apsusc.2018.03.091

    Article  Google Scholar 

  146. Singh AK, Jha S, Pandey PM (2012) Nanofinishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process. Int J Mach Tools Manuf 63:21–31. https://doi.org/10.1016/j.ijmachtools.2012.07.002

    Article  Google Scholar 

  147. Yin SH, Xu ZQ, Chen FJ, Yu JW (2013) Inclined axis magnetorheological finishing technology for small aspherical surface. J Mech Eng 49(17):33–38. https://doi.org/10.3901/jme.2013.17.033. (In Chinese)

    Article  Google Scholar 

  148. Ren K, Luo X, Zheng L, Bai Y, Li L, Hu H, Zhang X (2014) Belt-MRF for large aperture mirrors. Opt Express 22(16):19262–19276. https://doi.org/10.1364/OE.22.019262

    Article  Google Scholar 

  149. Ren K (2014) Belt-MRF for large aperture mirrors. Dissertation, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China (In Chinese)

  150. Wang DK (2018) Study on the key technologies of belt magnetorheological finishing. Dissertation, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China (In Chinese)

  151. Das M, Jain VK, Ghoshdastidar PS (2012) Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process. Int J Adv Manuf Technol 62(1):405–420. https://doi.org/10.1007/s00170-011-3808-2

    Article  Google Scholar 

  152. Grover V, Singh AK (2018) Modelling of surface roughness in a new magnetorheological honing process for internal finishing of cylindrical workpieces. Int J Mech Sci 144:679–695. https://doi.org/10.1016/j.ijmecsci.2018.05.058

    Article  Google Scholar 

  153. Liu J, He J, Peng Y (2023) Development analysis of magnetorheological precession finishing (MRPF) technology. Opt Express 31(26):43535–43549. https://doi.org/10.1364/OE.502933

    Article  Google Scholar 

  154. Paswan SK, Singh AK (2022) Development of a new in-situ rotating magnetorheological honing technique for fine finishing the inner cylindric surfaces. Mach Sci Technol 26(4):665–699. https://doi.org/10.1080/10910344.2022.2129990

    Article  Google Scholar 

  155. Zhang FH, Wang HJ, Luan DR (2007) Research on machining mechanics and experiment of ultrasonic-magnetorheological compound finishing. Int J Comput Appl Technol 29(2–4):252–256. https://doi.org/10.1504/IJCAT.2007.015275

    Article  Google Scholar 

  156. Zhang FH, Wang HJ, Liu JF, Luan DR, Zhang Y (2009) Study on the surface quality of optical glass in ultrasonic-magnetorheological compound finishing. Key Eng Mater 389–390:181–186. https://doi.org/10.4028/www.scientific.net/KEM.389-390.181

    Article  Google Scholar 

  157. Wang HJ (2007) Research on the key technologies of ultrasonic-magnetorheological compound finishing. Dissertation, Harbin Institute of Technology, Harbin, China (In Chinese)

  158. Yu XB (2014) Research on key technologies of figure error correction of ultrasonic-magnetorheological compound finishing. Dissertation, Harbin Institute of Technology, Harbin, China (In Chinese)

  159. Jain VK, Ranjan P, Suri VK, Komanduri R (2010) Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications. CIRP Ann 59(1):323–328. https://doi.org/10.1016/j.cirp.2010.03.106

    Article  Google Scholar 

  160. Ghai V, Ranjan P, Batish A, Singh H (2018) Atomic-level finishing of aluminum alloy by chemo-mechanical magneto-rheological finishing (CMMRF) for optical applications. J Manuf Process 32:635–643. https://doi.org/10.1016/j.jmapro.2018.03.032

    Article  Google Scholar 

  161. Liang HZ (2019) Study on chemical magnetorheological compound finishing mechanism of single crystal SiC. Dissertation, Guangdong University of Technology, Guangzhou, China (In Chinese)

  162. Tian H, Yan Q, Lu J, Yu J (2007) Foundational study on micro machining with instantaneous tiny grinding wheel based on electro-magneto-rheological effect. Proc SPIE 6724:67240P. https://doi.org/10.1117/12.782682

    Article  Google Scholar 

  163. Liu Y, Yan QS, Lu JB, Gao WQ, Yang Y (2009) Micro machining of three-dimensional microstructure with the tiny-grinding wheel based on the electro-magneto-rheological effect. Key Eng Mater 407–408:363–367. https://doi.org/10.4028/www.scientific.net/KEM.407-408.363

    Article  Google Scholar 

  164. Kordonski W, Shorey A, Sekeres A (2003) New magnetically assisted finishing method: material removal with magnetorheological fluid jet. Proc SPIE 5180:107–114. https://doi.org/10.1117/12.506280

    Article  Google Scholar 

  165. Dai YF, Zhang XC, Li SY, Peng XQ (2009) Deterministic magnetorheological jet polishing technology. J Mech Eng 45(5):171–176. https://doi.org/10.3901/jme.2009.05.171. (In Chinese)

    Article  Google Scholar 

  166. Zhang XC, Dai YF, Li SY, Peng XQ (2007) Study on magnetorheological jet polishing technology. Mach Des Manuf 45(12):114–116. https://doi.org/10.3969/j.issn.1001-3997.2007.12.048. (In Chinese)

    Article  Google Scholar 

  167. Wang T, Cheng H, Zhang W, Yang H, Wu W (2016) Restraint of path effect on optical surface in magnetorheological jet polishing. Appl Opt 55(4):935–942. https://doi.org/10.1364/AO.55.000935

    Article  Google Scholar 

  168. Wang T, Cheng H, Yang H, Wu W, Tam H (2015) Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model. Appl Opt 54(21):6433–6440. https://doi.org/10.1364/AO.54.006433

    Article  Google Scholar 

  169. Sun Z, Fan Z, Tian Y, Qian C, Ma Z (2022) Investigation on magnetorheological shear thickening finishing (MSTF) with radially slotted magnetic pole for free-form surface. Int J Adv Manuf Technol 123(9):3313–3327. https://doi.org/10.1007/s00170-022-10313-0

    Article  Google Scholar 

  170. Ma Z, Tian Y, Qian C, Ahmad S, Fan Z, Sun Z (2023) Modeling and simulation of material removal characteristics in magnetorheological shear thickening polishing. Int J Adv Manuf Technol 128(5):2319–2331. https://doi.org/10.1007/s00170-023-12093-7

    Article  Google Scholar 

  171. Jha S, Jain VK (2004) Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. Int J Mach Tools Manuf 44(10):1019–1029. https://doi.org/10.1016/j.ijmachtools.2004.03.007

    Article  Google Scholar 

  172. Wang YQ (2016) Study on magnetorheological finishing using large polishing tool for ultra-smooth flat surface. Dissertation, Hunan University, Changsha, China (In Chinese)

  173. Kinast J, Schlegel R, Kleinbauer K, Steinkopf R, Follert R, Dorn R, Lizon JL, Hatzes A, Tünnermann A (2018) Manufacturing of aluminum mirrors for cryogenic applications. Proc SPIE 10706:107063G. https://doi.org/10.1117/12.2313126

    Article  Google Scholar 

  174. Beier M, Scheiding S, Gebhardt A, Loose R, Risse S, Eberhardt R, Tünnermann A (2013) Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF). Proc SPIE 8884:88840S. https://doi.org/10.1117/12.2035986

    Article  Google Scholar 

  175. Institute of Semiconductors, Chinese Academy of Sciences (2018) 4.03 meters of “big eyes”! The world’s largest aperture single silicon carbide reflector successfully developed. http://semi.cas.cn/kxcb/kpwz/201809/t20180906_5065092.html. Accessed 24 February 2024

  176. Liu H, Cheng J, Wang T, Chen M (2019) Magnetorheological finishing of an irregular-shaped small-bore complex component using a small ball-end permanent-magnet polishing head. Nanotechnol Precis Eng 2(3):125–129. https://doi.org/10.1016/j.npe.2019.10.001

    Article  Google Scholar 

  177. Ji AX, Wang HY, Bi C, Xu AQ (2022) Design of ultrasonic magnetorheological finishing excitation device for medical bone screw. Opt Precis Eng 30(18):2219–2231. https://doi.org/10.37188/ope.20223018.2219. (In Chinese)

    Article  Google Scholar 

  178. Yan QS, Zhao Y, Liang ZB, Chen JX, Pan JS (2021) Study on cluster magnetorheological finishing of medical titanium alloy with dynamic magnetic fields. Surf Technol 50(9):322–332, 378. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.09.034. (In Chinese)

  179. Prakash C, Singh S, Pramanik A, Basak A, Królczyk G, Bogdan-Chudy M, Wu YL, Zheng HY (2021) Experimental investigation into nano-finishing of β-TNTZ alloy using magnetorheological fluid magnetic abrasive finishing process for orthopedic applications. J Mater Res Technol 11:600–617. https://doi.org/10.1016/j.jmrt.2021.01.046

    Article  Google Scholar 

  180. Arrasmith S, Jacobs S, Lambropoulos J, Maltsev A, Golini D, Kordonski W (2001) Use of magnetorheological finishing (MRF) to relieve residual stress and subsurface damage on lapped semiconductor silicon wafers. Proc SPIE 4451:286–294. https://doi.org/10.1117/12.453627

    Article  Google Scholar 

  181. Sidpara A, Jain VK (2012) Nano–level finishing of single crystal silicon blank using magnetorheological finishing process. Tribol Int 47:159–166. https://doi.org/10.1016/j.triboint.2011.10.008

    Article  Google Scholar 

  182. Sun SK, Lu JB, Yan QS (2021) Technological experiment of cluster magnetorheological finishing of InP wafer with dynamic magnetic fields. Lubr Eng 46(11):40–45. https://doi.org/10.3969/j.issn.0254-0150.2021.11.007. (In Chinese)

    Article  Google Scholar 

  183. Parameswari G, Jain VK, Ramkumar J, Nagdeve L (2019) Experimental investigations into nanofinishing of Ti6Al4V flat disc using magnetorheological finishing process. Int J Adv Manuf Technol 100(5):1055–1065. https://doi.org/10.1007/s00170-017-1191-3

    Article  Google Scholar 

  184. Shorey AB, Jacobs SD, Kordonski WI, Gans RF (2000) Understanding the mechanism of glass removal in magnetorheological finishing. LLE Rev 83:157–172

    Google Scholar 

  185. Schinhaerl M, Smith G, Stamp R, Rascher R, Smith L, Pitschke E, Sperber P, Geiss A (2008) Mathematical modelling of influence functions in computer-controlled polishing: part I. Appl Math Model 32(12):2888–2906. https://doi.org/10.1016/j.apm.2007.10.013

    Article  Google Scholar 

  186. Song C, Peng XQ, Dai YF, Shi F (2009) Research on process optimization of magnetorheological finishing basing on predictive model of removal function. J Natl Univ Def Technol 31(4):20–24. https://doi.org/10.3969/j.issn.1001-2486.2009.04.005. (In Chinese)

    Article  Google Scholar 

  187. Ghosh G, Dalabehera RK, Sidpara A (2019) Parametric study on influence function in magnetorheological finishing of single crystal silicon. Int J Adv Manuf Technol 100(5):1043–1054. https://doi.org/10.1007/s00170-018-2330-1

    Article  Google Scholar 

  188. Liu S, Wang H, Zhang Q, Hou J, Zhong B, Chen X (2020) Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik 206:164368. https://doi.org/10.1016/j.ijleo.2020.164368

    Article  Google Scholar 

  189. Golini D, Jacobs S, Kordonski W, Dumas P (1997) Precision optics fabrication using magnetorheological finishing. Proc SPIE 10289:102890H. https://doi.org/10.1117/12.279809

    Article  Google Scholar 

  190. Kordonski W, Golini D, Dumas P, Hogan S, Jacobs S (1998) Magnetorheological-suspension-based finishing technology. Proc SPIE 3326:527–535. https://doi.org/10.1117/12.310670

    Article  Google Scholar 

  191. Peng XQ, You WW, Shi F (2006) A micro-mechanic-hydrodynamic model for yield stress of magnetorheological fluids. J Natl Univ Def Technol 04:110–114. https://doi.org/10.3969/j.issn.1001-2486.2006.04.023. (In Chinese)

    Article  Google Scholar 

  192. Schinhaerl M, Rascher R, Stamp R, Smith G, Smith L, Pitschke E, Sperber P (2007) Filter algorithm for influence functions in the computer controlled polishing of high-quality optical lenses. Int J Mach Tools Manuf 47(1):107–111. https://doi.org/10.1016/j.ijmachtools.2006.02.005

    Article  Google Scholar 

  193. Shi F, Dai YF, Peng XQ, Song C (2009) Three-dimensional material removal model of magnetorheological finishing (MRF). China Mech Eng 20(6):644–648. https://doi.org/10.3321/j.issn:1004-132X.2009.06.004. (In Chinese)

    Article  Google Scholar 

  194. Schinhaerl M, Smith G, Stamp R, Rascher R, Smith L, Pitschke E, Sperber P, Geiss A (2008) Mathematical modelling of influence functions in computer-controlled polishing: part II. Appl Math Model 32(12):2907–2924. https://doi.org/10.1016/j.apm.2007.10.012

    Article  Google Scholar 

  195. Dai Y, Song C, Peng X, Shi F (2010) Calibration and prediction of removal function in magnetorheological finishing. Appl Opt 49(3):298–306. https://doi.org/10.1364/AO.49.000298

    Article  Google Scholar 

  196. Liu S, Wang H, Hou J, Zhang Q, Zhong B, Chen X, Zhang M (2022) Morphology characterization of polishing spot and process parameters optimization in magnetorheological finishing. J Manuf Process 80:259–272. https://doi.org/10.1016/j.jmapro.2022.06.008

    Article  Google Scholar 

  197. Zhang F, Yu JC, Zhang XJ, Tan QC (2001) Analysis of magnetic field used in magnetorheological finishing. Chin J Sci Instrum 22(1):42–44, 48. https://doi.org/10.19650/j.cnki.cjsi.2001.01.012 (In Chinese)

  198. Zheng YC, Wen H, He JG (2015) Influence of circuit structure and material parameters on the magnetic field in magneto-rheological finishing (MRF) area. J Magn Mater Devices 46(6):50–53. https://doi.org/10.3969/j.issn.1001-3830.2015.06.013. (In Chinese)

    Article  Google Scholar 

  199. Nie M, Cao J, Li J, Fu M (2019) Magnet arrangements in a magnetic field generator for magnetorheological finishing. Int J Mech Sci 161–162:105018. https://doi.org/10.1016/j.ijmecsci.2019.105018

    Article  Google Scholar 

  200. Lu JB, Bin SM, Yan QS, Huang YL, Xiong Q (2020) Effect of magnetic field distribution on material removal in magnetorheological finishing with multiple polishing heads. Lubr Eng 45(4):20–26. https://doi.org/10.3969/j.issn.0254-0150.2020.04.004. (In Chinese)

    Article  Google Scholar 

  201. Wang D, Hu H, Li L, Bai Y, Luo X, Xue D, Zhang X (2017) Effects of the gap slope on the distribution of removal rate in Belt-MRF. Opt Express 25(22):26600–26614. https://doi.org/10.1364/OE.25.026600

    Article  Google Scholar 

  202. Jiang ZQ, Liu P, Fang JH (2018) Research review on magnetorheological fluids. Synth Lubr 45(2):27–30. https://doi.org/10.3969/j.issn.1672-4364.2018.02.010. (In Chinese)

    Article  Google Scholar 

  203. Bai Y (2015) Preparation of MR polishing fluid and study on the stability of removal function. Dissertation, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China (In Chinese)

  204. Han WJ, Piao SH, Choi HJ, Seo Y (2017) Core–shell structured mesoporous magnetic nanoparticles and their magnetorheological response. Colloids Surf A Physicochem Eng Asp 524:79–86. https://doi.org/10.1016/j.colsurfa.2017.04.016

    Article  Google Scholar 

  205. Shen ZS, Pan JS, Yan QS (2023) A review of research on the factors influencing the stability of magnetorheological fluids. J Funct Mater 54(4):4073–4086. https://doi.org/10.3969/j.issn.1001-9731.2023.04.010. (In Chinese)

    Article  Google Scholar 

  206. Kordonski WI, Gorodkin SR, Novikova ZA (1998) The influence of ferroparticle concentration and size on MR fluid properties. In: Proceedings of the 6th International Conference on Electrorheological Fluids, Magnetorheological Suspensions, and Their Applications. World Scientific, Singapore, pp 535–542

  207. Guo QY, Wang J, Ouyang Q (2018) Effect of SiO2 with different specific surface areas on rheological properties and sedimentation stability of magnetorheological fluid. Mater Mech Eng 42(10):8–12. https://doi.org/10.11973/jxgccl201810002. (In Chinese)

    Article  Google Scholar 

  208. Kordonski WI, Golini D (1999) Fundamentals of magnetorheological fluid utilization in high precision finishing. J Intell Mater Syst Struct 10(9):683–689. https://doi.org/10.1106/011M-CJ25-64QC-F3A6

    Article  Google Scholar 

  209. López-López MT, Gómez-Ramírez A, Rodríguez-Arco L, Durán JDG, Iskakova L, Zubarev A (2012) Colloids on the frontier of ferrofluids. Rheological Prop Langmuir 28(15):6232–6245. https://doi.org/10.1021/la204112w

    Article  Google Scholar 

  210. Ginder JM, Davis LC (1994) Shear stresses in magnetorheological fluids: role of magnetic saturation. Appl Phys Lett 65(26):3410–3412. https://doi.org/10.1063/1.112408

    Article  Google Scholar 

  211. Yang JJ, Yan H, Dai J, Zhang HS (2017) A review on magnetorheological fluid:properties and applications. Chem Ind Eng Prog 36(1):247–260. https://doi.org/10.16085/j.issn.1000-6613.2017.01.031. (In Chinese)

    Article  Google Scholar 

  212. Li HT, Peng XH, He GT (2010) Research status of mechanism and behavior description of magnetorheological fluids. Mater Rep 24(3):121–124 (In Chinese)

    Google Scholar 

  213. Hu H, Dai Y, Peng X, Wang J (2011) Research on reducing the edge effect in magnetorheological finishing. Appl Opt 50(9):1220–1226. https://doi.org/10.1364/AO.50.001220

    Article  Google Scholar 

  214. Li LX (2016) Study on the key techniques of magnetorheological finishing for large aspheric optics. Dissertation, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China (In Chinese)

  215. Zhong X, Fan B, Wu F (2020) Reducing edge error based on further analyzing the stability of edge TIF and correcting the post-edge algorithm in MRF process. Opt Rev 27(1):14–22. https://doi.org/10.1007/s10043-019-00555-x

    Article  Google Scholar 

  216. Jeon M, Jeong SK, Kang JG, Yeo WJ, Kim YJ, Choi HJ, Lee W (2022) Prediction model for edge effects in magnetorheological finishing based on edge tool influence function. Int J Precis Eng Manuf 23(11):1275–1289. https://doi.org/10.1007/s12541-022-00722-2

    Article  Google Scholar 

  217. Jia Y (2016) Process algorithms and strategies for mid spatial frequency error control based on magnetorheological polishing. Dissertation, China Academy of Engineering Physics, Mianyang, China (In Chinese)

  218. Yang SF, Chang PY, Yan HS (2012) Rejection of medium-high frequency error in magnetorheological polishing by stochastic transverse step method. Aviat Precis Manuf Technol 49(2):1–5, 16. https://doi.org/10.3969/j.issn.1003-5451.2012.02.001. (In Chinese)

  219. Hou J, Chen XH, Liu SW, Zheng N, Zhong B, Deng WH (2020) Effects of magnetorheological processing parameters on the mid-spatial frequency errors of optics. Proc SPIE 11427:114272P. https://doi.org/10.1117/12.2552472

    Article  Google Scholar 

  220. Wan S, Wei C, Hu C, Situ G, Shao Y, Shao J (2021) Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing. Int J Mach Tools Manuf 161:103673. https://doi.org/10.1016/j.ijmachtools.2020.103673

    Article  Google Scholar 

  221. Wang B, Shi F, Tie G, Zhang W, Song C, Tian Y, Shen Y (2022) The cause of ribbon fluctuation in magnetorheological finishing and its influence on surface mid-spatial frequency error. Micromachines 13(5):697. https://doi.org/10.3390/mi13050697

    Article  Google Scholar 

  222. Wang B, Shi F, Zhang W, Tie G, Song C, Guo S (2022) Key technology research on magnetorheological finishing based on suppression of surface mid-spatial frequency ripple errors. Opt Mater Express 12(8):3213–3224. https://doi.org/10.1364/OME.466310

    Article  Google Scholar 

  223. Dai Y, Shi F, Peng X, Li S (2009) Restraint of mid-spatial frequency error in magneto-rheological finishing (MRF) process by maximum entropy method. Sci China Ser E Technol Sci 52(10):3092–3097. https://doi.org/10.1007/s11431-009-0316-9

    Article  Google Scholar 

  224. Yu XB, Zhang FH, Zhang Y, Fu PQ (2010) Planning and Implementation of tool path computer controlled polishing optical surfaces. Proc SPIE 7655:765510. https://doi.org/10.1117/12.867919

    Article  Google Scholar 

  225. Hall C, Jones A, Messner B, Hallock B (2007) Magnetorheological finishing of freeform optics. Proc SPIE 10316:103160J. https://doi.org/10.1117/12.719886

    Article  Google Scholar 

  226. Wang W, Gong R, Ji S, Zhao J, Li X (2024) A mid-high spatial frequency error suppression method based on the pseudo-random path with space MABF mapping for complex surface. Int J Adv Manuf Technol 130(5):2443–2456. https://doi.org/10.1007/s00170-023-12801-3

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52075463), Shenzhen Science & Technology Program (No. JCYJ20210324122001003), Fujian Provincial Science and Technology Program (No.2021H6008), and Hunan Province Key Research and Development Program (No. 2023GK2069).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception and design. The first and final draft of the manuscript was written by Huiming Feng. Yunfeng Peng reviewed the manuscript critically, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunfeng Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Huang, L., Huang, P. et al. Review on high efficiency and high precision compliant polishing method. Int J Adv Manuf Technol 132, 2091–2128 (2024). https://doi.org/10.1007/s00170-024-13388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13388-z

Keywords

Navigation