Skip to main content
Log in

Selective laser melting processing of 316L stainless steel: effect of microstructural differences along building direction on corrosion behavior

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

SLM-processed 316L stainless steel exhibits promoted mechanical and corrosion performances, compared with the conventionally manufactured counterparts, and has been successfully applied in many fields. The anisotropic microstructure of SLM-processed materials, caused by the layer-wise fashion of SLM processing, not only results in the anisotropy of mechanical properties but also leads to the anisotropic corrosion behavior. In this study, the influence of microstructural differences of SLM-processed 316L stainless steel along the building direction on corrosion behavior was investigated. Firstly, the influence of laser scan speed on the microstructure, hardness, and corrosion behavior of SLM-processed 316L stainless steel samples was evaluated. Then, the sample with the highest relative density and the best hardness and corrosion resistance was selected to further investigate the influence of microstructural differences along the building direction on the corrosion behavior. Results showed that the corrosion resistance improved with the increase of distance from bottom plane along the building direction. Microstructure and phase analysis revealed that the microstructural differences in crystallographic orientation and grain size along the building direction of SLM-processed 316L stainless steel led to the different corrosion behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  2. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  3. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62:1147–1155. https://doi.org/10.1007/s00170-011-3878-1

    Article  Google Scholar 

  4. Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of Direct Laser Deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62. https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  5. Yakout M, Cadamuro A, Elbestawi MA, Veldhuis SC (2017) The selection of process parameters in additive manufacturing for aerospace alloys. Int J Adv Manuf Technol 92:1–18. https://doi.org/10.1007/s00170-017-0280-7

    Article  Google Scholar 

  6. Jin YA, Plott J, Chen R, Wensman J, Shih A (2015) Additive manufacturing of custom orthoses and prostheses - a review. Procedia CIRP 36:199–204. https://doi.org/10.1016/j.procir.2015.02.125

    Article  Google Scholar 

  7. Rong T, Gu D, Shi Q, Cao S, Xia M (2016) Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting. Surf Coat Technol 307:418–427. https://doi.org/10.1016/j.surfcoat.2016.09.011

    Article  Google Scholar 

  8. Lin K, Li X, Tian L, Dong H (2015) Active screen plasma surface co-alloying treatments of 316 stainless steel with nitrogen and silver for fuel cell bipolar plates. Surf Coat Technol 283:122–128. https://doi.org/10.1016/j.surfcoat.2015.10.038

    Article  Google Scholar 

  9. Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2014) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76:869–879. https://doi.org/10.1007/s00170-014-6297-2

    Article  Google Scholar 

  10. Niu PD, Li RD, Yuan TC, Zhu SY, Chen C, Wang MB, Huang L (2019) Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics 104:24–32. https://doi.org/10.1016/j.intermet.2018.10.018

    Article  Google Scholar 

  11. Li R, Niu P, Yuan T, Cao P, Chen C, Zhou K (2018) Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property. J Alloys Compd 746:125–134. https://doi.org/10.1016/j.jallcom.2018.02.298

    Article  Google Scholar 

  12. Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051

    Article  Google Scholar 

  13. Kamath C, El-Dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74:65–78. https://doi.org/10.1007/s00170-014-5954-9

    Article  Google Scholar 

  14. Wang D, Mai S, Xiao D, Yang Y (2016) Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM. Int J Adv Manuf Technol 86:781–792. https://doi.org/10.1007/s00170-015-8216-6

    Article  Google Scholar 

  15. Irrinki H, Harper T, Badwe S, Stitze J, Gulsoy O, Gupta G, Atre SV (2018) Effects of powder characteristics and processing conditions on the corrosion performance of 17-4 PH stainless steel fabricated by laser-powder bed fusion. Prog Addit Manuf 3:39–49. https://doi.org/10.1007/s40964-018-0048-0

    Article  Google Scholar 

  16. Li R, Liu J, Shi Y, Wang L, Jiang W (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol 59:1025–1035. https://doi.org/10.1007/s00170-011-3566-1

    Article  Google Scholar 

  17. Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581–586. https://doi.org/10.1016/j.matdes.2013.03.056

    Article  Google Scholar 

  18. Ma M, Wang Z, Gao M, Zeng X (2014) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150. https://doi.org/10.1016/j.jmatprotec.2014.07.034

    Article  Google Scholar 

  19. Suryawanshi J, Prashanth KG, Ramamurty U (2017) Mechanical behavior of selective laser melted 316L stainless steel. Mater Sci Eng A 696:113–121. https://doi.org/10.1016/j.msea.2017.04.058

    Article  Google Scholar 

  20. Gray Iii GT, Livescu V, Rigg PA, Trujillo CP, Cady CM, Chen SR, Carpenter JS, Lienert TJ, Fensin SJ (2017) Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater 138:140–149. https://doi.org/10.1016/j.actamat.2017.07.045

    Article  Google Scholar 

  21. Wise JL, Adams DP, Nishida EE, Song B, Maguire MC, Carroll J, Reedlunn B, Bishop JE, Palmer TA (2017) Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel. AIP Conf Proc 1793. https://doi.org/10.1063/1.4971640

  22. Wang YM, Voisin T, McKeown JT, Ye J, Calta NP, Li Z, Zeng Z, Zhang Y, Chen W, Roehling TT, Ott RT, Santala MK, Depond PJ, Matthews MJ, Hamza AV, Zhu T (2018) Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 17:63–70. https://doi.org/10.1038/NMAT5021

    Article  Google Scholar 

  23. Qiu C, Al KM, Aladawi AS, Hatmi I (2018) A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci Rep 8:1–16. https://doi.org/10.1038/s41598-018-26136-7

    Article  Google Scholar 

  24. Sun Z, Tan X, Tor SB, Chua CK (2018) Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater 10:1–10. https://doi.org/10.1038/s41427-018-0018-5

    Article  Google Scholar 

  25. Pham MS, Dovgyy B, Hooper PA (2017) Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing. Mater Sci Eng A 704:102–111. https://doi.org/10.1016/j.msea.2017.07.082

    Article  Google Scholar 

  26. Saeidi K, Neikter M, Olsen J, Shen ZJ, Akhtar F (2017) 316L stainless steel designed to withstand intermediate temperature. Mater Des 135:1–8. https://doi.org/10.1016/j.matdes.2017.08.072

    Article  Google Scholar 

  27. Chao Q, Cruz V, Thomas S, Birbilis N, Collins P, Taylor A, Hodgson PD, Fabijanic D (2017) On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr Mater 141:94–98. https://doi.org/10.1016/j.scriptamat.2017.07.037

    Article  Google Scholar 

  28. Shang Y, Yuan Y, Li D, Li Y, Chen J (2017) Effects of scanning speed on in vitro biocompatibility of 316L stainless steel parts elaborated by selective laser melting. Int J Adv Manuf Technol 92:4379–4385. https://doi.org/10.1007/s00170-017-0525-5

    Article  Google Scholar 

  29. Yakout M, Elbestawi MA, Veldhuis SC (2018) On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol 95:1953–1974. https://doi.org/10.1007/s00170-017-1303-0

    Article  Google Scholar 

  30. Zhong Y, Liu L, Wikman S, Cui D, Shen Z (2016) Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470:170–178. https://doi.org/10.1016/j.jnucmat.2015.12.034

    Article  Google Scholar 

  31. Kong D, Ni X, Dong C, Lei X, Zhang L, Man C, Yao J, Chen X, Li X (2018) Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater Des 152:88–101. https://doi.org/10.1016/j.matdes.2018.04.058

    Article  Google Scholar 

  32. Tolosa I, Garciandía F, Zubiri F, Zapirain F, Esnaola A (2010) Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int J Adv Manuf Technol 51:639–647. https://doi.org/10.1007/s00170-010-2631-5

    Article  Google Scholar 

  33. Luecke WE, Slotwinski JA (2014) Mechanical properties of austenitic stainless steel made by additive manufacturing. J Res Natl Inst Stand Technol 119:398. https://doi.org/10.6028/jres.119.015

    Article  Google Scholar 

  34. Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235. https://doi.org/10.1016/j.actamat.2016.03.019

    Article  Google Scholar 

  35. Xu X, Mi G, Luo Y, Jiang P, Shao X, Wang C (2017) Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316L stainless steel wire. Opt Lasers Eng 94:1–11. https://doi.org/10.1016/j.optlaseng.2017.02.008

    Article  Google Scholar 

  36. Wang C, Tan X, Liu E, Tor SB (2018) Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Mater Des 147:157–166. https://doi.org/10.1016/j.matdes.2018.03.035

    Article  Google Scholar 

  37. Fergani O, Bratli Wold A, Berto F, Brotan V, Bambach M (2017) Study of the effect of heat treatment on fatigue crack growth behaviour of 316L stainless steel produced by selective laser melting. Fatigue Fract Eng Mater Struct 41:1–18. https://doi.org/10.1111/ffe.12755

    Article  Google Scholar 

  38. Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A (2014) On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform 23:2139–2148. https://doi.org/10.1007/s11665-014-0993-9

    Article  Google Scholar 

  39. Niendorf T, Leuders S, Riemer A, Richard HA, Troster T, Schwarze D (2013) Highly anisotropic steel processed by selective laser melting. Metall Mater Trans B Process Metall Mater Process Sci 44:794–796. https://doi.org/10.1007/s11663-013-9875-z

    Article  Google Scholar 

  40. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  41. Chen LY, Huang JC, Lin CH, Pan CT, Chen SY, Yang TL, Lin DY, Lin HK (2016) Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A 682:389–395. https://doi.org/10.1016/j.msea.2016.11.061

    Article  Google Scholar 

  42. Chen H, Gu D, Xiong J, Xia M (2017) Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting. J Mater Process Technol 250:99–108. https://doi.org/10.1016/j.jmatprotec.2017.06.044

    Article  Google Scholar 

  43. Zhao S, Shen X, Yang J, Teng W, Wang Y (2018) Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting. Opt Laser Technol 103:239–250. https://doi.org/10.1016/j.optlastec.2018.01.005

    Article  Google Scholar 

  44. Xia M, Gu D, Yu G, Dai D, Chen H, Shi Q (2017) Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy. Int J Mach Tools Manuf 116:96–106. https://doi.org/10.1016/j.ijmachtools.2017.01.005

    Article  Google Scholar 

  45. Gu D, Hagedorn YC, Meiners W, Meng G, Batista RJS, Wissenbach K, Poprawe R (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60:3849–3860. https://doi.org/10.1016/j.actamat.2012.04.006

    Article  Google Scholar 

  46. Tucho WM, Lysne VH, Austbø H, Atle SK, Vidar H (2018) Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd 740:910–925. https://doi.org/10.1016/j.jallcom.2018.01.098

    Article  Google Scholar 

  47. Chen H, Gu D (2016) Effect of metallurgical defect and phase transition on geometric accuracy and wear resistance of iron-based parts fabricated by selective laser melting. J Mater Res 31:1477–1490. https://doi.org/10.1557/jmr.2016.132

    Article  Google Scholar 

  48. Stašić J, Božić D (2016) The effect of NiB additive on surface morphology and microstructure of 316L stainless steel single tracks and layers obtained by SLM. Surf Coat Technol 307:407–417. https://doi.org/10.1016/j.surfcoat.2016.09.019

    Article  Google Scholar 

  49. Gu D, Hagedorn YC, Meiners W, Wissenbach K, Poprawe R (2011) Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coat Technol 205:3285–3292. https://doi.org/10.1016/j.surfcoat.2010.11.051

    Article  Google Scholar 

  50. Geenen K, Röttger A, Theisen W (2017) Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater Corros 68:764–775. https://doi.org/10.1002/maco.201609210

    Article  Google Scholar 

  51. Sander G, Thomas S, Cruz V, Jurg M, Birbilis N, Gao X, Brameld M, Hutchinson CR (2017) On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. J Electrochem Soc 164:C250–C257. https://doi.org/10.1149/2.0551706jes

    Article  Google Scholar 

  52. Jia H, Feng X, Yang Y (2017) Effect of crystal orientation on corrosion behavior of directionally solidified Mg-4 wt% Zn alloy. J Mater Sci Technol 34:1229–1235. https://doi.org/10.1016/j.jmst.2017.06.009

    Article  Google Scholar 

  53. Lopez-Sesenes R, Rosales I, Uruchurtu-Chavarin J, Salinas-Bravo VM, González-Rodriguez JG (2018) Effect of crystalographic orientation on the corrosion behavior of Mo3Si single crystals in NaCl solution. Int J Electrochem Sci 13:4840–4840. https://doi.org/10.20964/2018.05.31

    Article  Google Scholar 

  54. Lopez-Sesenes R, Rosales I, Gonzalez-Rodriguez JG (2018) Effect of crystal orientation on the corrosion behavior of Mo3Si single crystals in 0.5 M H2SO4. Electrochem Commun 88:71–74. https://doi.org/10.1016/j.elecom.2017.12.018

    Article  Google Scholar 

  55. Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66:075005–075005-13. https://doi.org/10.5006/1.3462912

    Article  Google Scholar 

Download references

Funding

The authors received funding from the Fundamental Research Funds for the Central Universities, No. 3082018NS2018038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Gu, D., Xi, L. et al. Selective laser melting processing of 316L stainless steel: effect of microstructural differences along building direction on corrosion behavior. Int J Adv Manuf Technol 104, 2669–2679 (2019). https://doi.org/10.1007/s00170-019-04136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04136-9

Keywords

Navigation