Skip to main content
Log in

Bone-patellar tendon–bone autograft maturation is superior to double-bundle hamstring tendon autograft maturation following anatomical anterior cruciate ligament reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The primary purpose of this study was to evaluate the second-look arthroscopic findings 1 year postoperatively and magnetic resonance imaging (MRI) findings 2 years after anterior cruciate ligament reconstruction (ACLR) using bone-patellar tendon–bone autograft (BTB) or hamstring tendon autograft (HT). Secondary purpose included clinical results from physical examination, including range of motion, Lachman test, pivot shift test, and knee anterior laxity evaluation, and the clinical score for subjective evaluations at 2 years after surgery.

Methods

Between 2015 and 2018, 75 patients with primary ACL injuries were divided into either the BTB group (n = 30) or HT group (n = 45). When using HT, an anatomical double-bundle ACLR was performed. BTB was indicated for athletes with sufficient motivation to return to sporting activity. Graft maturation on second-look arthroscopy was scored in terms of synovial coverage and revascularization. All participants underwent postoperative MRI evaluation 2 years postoperatively. The signal intensity (SI) characteristics of the reconstructed graft were evaluated using oblique axial proton density-weighted MR imaging (PDWI) perpendicular to the grafts. The signal/noise quotient (SNQ) was calculated to quantitatively determine the normalized SI. For clinical evaluation, the Lachman test, pivot shift test, KT-2000 evaluation, Lysholm score, and Knee injury and Osteoarthritis Outcome Score (KOOS) were used.

Results

Arthroscopic findings showed that the graft maturation score in the BTB group (3.6 ± 0.7) was significantly greater than that in the anteromedial bundle (AMB; 2.9 ± 0.2, p = 0.02) and posterolateral bundle (PLB; 2.0 ± 0.9, p = 0.001) in the HT group. The mean MRI-SNQs were as follows: BTB, 2.3 ± 0.5; AMB, 2.9 ± 0.9; and PLB, 4.1 ± 1.1. There were significant differences between BTB, AMB, and PLB (BTB and AMB: p = 0.04, BTB and PLB: p = 0.003, AMB and PLB: p = 0.03). Second-look arthroscopic maturation score and MRI-SNQ value significantly correlated for BTB, AMB, and PLB. No significant differences were detected in clinical scores. There was a significant difference (p = 0.02) in the knee laxity evaluation (BTB: 0.9 ± 1.1 mm; HT: 2.0 ± 1.9 mm).

Conclusion

BTB maturation is superior to that of double-bundle HT based on morphological and MRI evaluations following anatomical ACLR, although no significant differences were found in clinical scores. Regarding clinical relevance, the advantages of BTB may help clinicians decide on using the autograft option for athletes with higher motivation to return to sporting activity because significant differences were observed in morphological evaluation, MRI assessment, and knee anterior laxity evaluation between BTB and double-bundle HT.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

BTB:

Bone-patellar tendon–bone

HT:

Hamstring

PCL:

Posterior cruciate ligament

AM:

Anteromedial

PL:

Posterolateral

SNQ:

The signal/noise quotient

SI:

Signal intensity

PDWI:

Proton density-weighted image

References

  1. Ahn JH, Kim JD, Kang HW (2015) Anatomic placement of the femoral tunnels in double-bundle anterior cruciate ligament reconstruction correlates with improved graft maturation and clinical outcomes. Arthroscopy 31:2152–2161

    Article  PubMed  Google Scholar 

  2. Ahn JH, Yoo JC, Yang HS, Kim JH, Wang JH (2007) Second-look arthroscopic findings of 208 patients after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 15:242–248

    Article  PubMed  Google Scholar 

  3. Biau DJ, Katsahian S, Kartus J (2009) Patellar tendon versus hamstring tendon autografts for reconstructing the anterior cruciate ligament: a meta-analysis based on individual patient data. Am J Sports Med 37:2470–2478

    Article  PubMed  Google Scholar 

  4. Casagranda BU, Maxwell NJ, Kavanagh EC, Towers JD, Shen W, Fu FH (2009) Normal appearance and complications of double bundle and selective-bundle anterior cruciate ligament reconstructions using optimal MRI techniques. AJR Am J Roentgenol 192:1407–1415

    Article  PubMed  Google Scholar 

  5. Chu CR, Williams AA (2019) Quantitative MRI UTE-T2* and T2* show progressive and continued graft maturation over 2 years in human patients after anterior cruciate ligament reconstruction. Orthop J Sports Med 7(8):2325967119863056

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cristiani R, Sarakatsianos V, Engstrom B, Samuelsson K, Forssblad M, Stalman A (2019) Increased knee laxity with hamstring tendon autograft compared to patellar tendon autograft: a cohort study of 5462 patients with primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27(2):381–388

    Article  PubMed  Google Scholar 

  7. DeFazio MW, Curry EJ, Gustin MJ, Sing DC, Abdul-Rassoul H, Ma R, Fu F, Li X (2020) Return to sport after ACL reconstruction with a BTB versus hamstring tendon autograft: a systematic review and meta-analysis. Orthop J Sports Med 8(12):2325967120964919

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeFroda SF, Karamchedu NP, Budacki R, Wiley T, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Fleming BC, Owens BD (2020) Evaluation of graft tensioning effects in anterior cruciate ligament reconstruction between hamstring and bone–patellar tendon bone autografts. J Knee Surg. https://doi.org/10.1055/s-0039-3402046

    Article  PubMed  PubMed Central  Google Scholar 

  9. DeFroda SF, ODonnell RM, Fadale PD, Owens BD, Fleming BC (2020) The role of magnetic resonance imaging in evaluating postoperative ACL reconstruction healing and graft mechanical properties: a new criterion for return to play? Phys Sportsmed. https://doi.org/10.1080/00913847.2020.1820846

    Article  PubMed  PubMed Central  Google Scholar 

  10. Denti M, Vetere DL, Bandi M, Volpi P (2006) Comparative evaluation of knee stability following reconstruction of the anterior cruciate ligament with the bone-patellar tendon-bone and the double semitendinosus-gracilis methods: 1-and 2-year prospective study. Knee Surg Sports Traumatol Arthrosc 14:637–640

    Article  PubMed  Google Scholar 

  11. Eriksson K, Forssblad M, Herbertsson P, Roos EM (2001) There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft. A prospective randomized study of 107 patients. Scand J Med Sci Sports 11:170–177

    Article  CAS  PubMed  Google Scholar 

  12. Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205

    Article  CAS  PubMed  Google Scholar 

  13. Fukuda H, Asai S, Kanisawa I, Takahashi T, Ogura T, Sakai H et al (2019) Inferior graft maturity in the PL bundle after autograft hamstring double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:491–497

    Article  PubMed  Google Scholar 

  14. Group MK, Spindler KP, Huston LJ, Zajichek A, Reinke EK, Amendola A, Andrish JT, Brophy RH, Dunn WR, Flanigan DC, Jones MH, Kaeding CC, Marx RG, Matava MJ, McCarty EC, Parker RD, Vidal AF, Wolcott ML, Wolf BR, Wright RW (2020) Anterior cruciate ligament reconstruction in high school and college-aged athletes: does autograft choice influence anterior cruciate ligament revision rates? Am J Sports Med 48:298–309

    Article  Google Scholar 

  15. Herbort M, Tecklenburg K, Zantop T, Raschke MJ, Hoser C, Schulze M, Petersen W, Fink C (2013) Single-bundle anterior cruciate reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone-patella tendon-bone graft configuration versus a round hamstring graft. Arthroscopy 29:1981–1990

    Article  PubMed  Google Scholar 

  16. Hofbauer M, Soldati F, Szomolanyi P, Trattnig S, Bartolucci F, Fu F et al (2019) Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:130–136

    Article  PubMed  Google Scholar 

  17. Hong SJ, Ahn JM, Ahn JH, Park SW (2005) Postoperative MR findings of the healthy ACL grafts: correlation with second look arthroscopy. Clin Imaging 29(1):55–59

    PubMed  Google Scholar 

  18. Iriuchishima T, Ingham SJ, Tajima G, Horaguchi T, Saito A, Tokuhashi Y, Van Houten AH, Aerts MM, Fu FH (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:1226–1231

    Article  PubMed  Google Scholar 

  19. Kautzner J, Kos P, Hanus M, Trc T, Havlas V (2015) A comparison of ACL reconstruction using patellar tendon versus hamstring autograft in female patients: a prospective randomised study. Int Orthop 39:125–130

    Article  PubMed  Google Scholar 

  20. Kawaguchi K, Taketomi S, Inui H, Yamagami R, Nakazato K, Takagi K, Kage T, Kawata M, Tanaka S (2019) Chronological Changes in anterior knee stability after anatomical anterior cruciate ligament reconstruction using bone-patellar tendon-bone graft and hamstrings grafts. J Knee Surg. https://doi.org/10.1055/s-0039-1700809

    Article  PubMed  Google Scholar 

  21. Kiekara T, Järvelä T, Huhtala H, Moisala AS, Suomalainen P, Paakkala A (2014) Tunnel communication and increased graft signal intensity on magnetic resonance imaging of double bundle anterior cruciate ligament reconstruction. Arthroscopy 30:1595–1601

    Article  PubMed  Google Scholar 

  22. Kim JH, Oh E, Yoon YC, Lee DK, Lee SS, Song SY, Wang JH (2020) The relationship between graft synovialization and graft revascularization after ACL reconstruction: assessment using dynamic contrast enhanced-MRI and second-look arthroscopy. Eur J Radiol 133:109346

    Article  PubMed  Google Scholar 

  23. Kim SG, Jung JH, Song JH, Bae JH (2019) Evaluation parameter of graft maturation on second-look arthroscopy following anterior cruciate ligament reconstruction: a systematic review. Knee Surg Relat Res 31(1):2. https://doi.org/10.1186/s43019-019-0005-3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kinugasa K, Hamada M, Yonetani Y, Tsujii A, Matsuo T, Tanaka Y, Tachibana Y, Shino K (2021) Chronological changes in cross-sectional area of the bone-patellar tendon-bone autograft after anatomic rectangular tunnel ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06404-8

    Article  PubMed  Google Scholar 

  25. Lai CCH, Ardern CL, Feller JA, Webster KE (2018) Eighty-three per cent of elite athletes return to preinjury sport after anterior cruciate ligament reconstruction: a systematic review with meta-analysis of return to sport rates, graft rupture rates and performance outcomes. Br J Sports Med 52:128–138

    Article  PubMed  Google Scholar 

  26. Laboute E, James-Belin E, Puig PL, Trouve P, Verhaeghe E (2018) Graft failure is more frequent after hamstring than patellar tendon autograft. Knee Surg Sports Traumatol Arthrosc 26(12):3537–3546

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Chen J, Li H, Wu Z, Chen S (2017) MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25(10):3171–3178

    Article  PubMed  Google Scholar 

  28. Li H, Tao H, Cho S, Chen S, Yao Z (2012) Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med 40:1519–1526

    Article  PubMed  Google Scholar 

  29. Lindanger L, Strand T, Molster AO, Solheim E, Inderhaug E (2019) Return to play and long-term participation in pivoting sports after anterior cruciate ligament reconstruction. Am J Sports Med 47:3339–3346

    Article  PubMed  Google Scholar 

  30. Ma Y, Murawski CD, Rahnemal-Azar AA, Maljian C, Lynch AD, Fu FH (2015) Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 23:661–668

    Article  PubMed  Google Scholar 

  31. Mae T, Shino K, Nakagawa S (2019) Second-look arthroscopy after anatomic anterior cruciate ligament reconstruction: bone-patellar tendon-bone versus hamstring tendon graft. J Orthop Sci 24:488–493

    Article  PubMed  Google Scholar 

  32. Magnussen RA, Carey JL, Spindler KP (2011) Does autograft choice determine intermediate-term outcome of ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 19:462–472

    Article  PubMed  Google Scholar 

  33. Meredith SJ, Rauer T, Chmielewski TL, Fink C, Diermeier T, Rothrauff BB, Svantesson E, Senorski EH, Hewett TE, Sherman SL, Lesniak BP, Group, the Panther Symposium ACL Injury Return to Sport Consensus, Bizzini M, Chen S, Cohen M, Villa SD, Engebretsen L, Feng H, Ferretti M, Fu FH, Imhoff AB, Kaeding CC, Karlsson J, Kuroda R, Lynch AD, Menetrey J, Musahl V, Navarro RA, Rabuck SJ, Siebold R, Snyder-Mackler L, Spalding T, Eck CV, Vyas D, Webster K, Wilk K (2020) Return to sport after anterior cruciate ligament injury: panther symposium acl injury return to sport consensus group. Orthop J Sports Med 28(8):2403–2414

    Google Scholar 

  34. Murgier J, Powell A, Young S, Clatworthy M (2020) Effectiveness of thicker hamstring or patella tendon grafts to reduce graft failure rate in anterior cruciate ligament reconstruction in young patients. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-05973-y

    Article  PubMed  Google Scholar 

  35. Ntoulia A, Papadopoulou F, Zampeli F, Ristanis S, Argyropoulou M, Georgoulis A (2013) Evaluation with contrast-enhanced magnetic resonance imaging of the anterior cruciate ligament graft during its healing process: a two-year prospective study. Skelet Radiol 42:541–552

    Article  Google Scholar 

  36. Ohji S, Aizawa J, Hirohata K, Ohmi T, Koga H, Okawa A, Jinno T, Yagishita K (2020) The gap between subjective return to sports and subjective athletic performance intensity after anterior cruciate ligament reconstruction. Orthop J Sports Med 8(9):2325967120947402

    Article  PubMed  PubMed Central  Google Scholar 

  37. Panos JA, Webster KE, Hewett TE (2020) Anterior cruciate ligament grafts display differential maturation patterns on magnetic resonance imaging following reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 28(7):2124–2138

    Article  PubMed  Google Scholar 

  38. Papageorriou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29:620–626

    Article  Google Scholar 

  39. Ramkumar PN, Hadley MD, Jones MH, Farrow LD (2018) Hamstring autograft in ACL reconstruction: a 13-year predictive analysis of anthropometric factors and surgeon trends relating to graft size. Orthop J Sports Med 6:2325967118779788

    PubMed  PubMed Central  Google Scholar 

  40. Rahardja R, Zhu M, Love H, Clatworthy MG, Monk AP, Young SW (2020) Effect of graft choice on revision and contralateral anterior cruciate ligament reconstruction: results from the New Zealand ACL Registry. Am J Sports Med 48:63–69

    Article  PubMed  Google Scholar 

  41. Rahardja R, Zhu M, Love H, Clatworthy MG, Monk AP, Young SW (2020) Factors associated with revision following anterior cruciate ligament reconstruction: a systematic review of registry data. Knee 27(2):287–299

    Article  PubMed  Google Scholar 

  42. Rahardja R, Zhu M, Love H, Clatworthy MG, Monk AP, Young SW (2019) Rates of revision and surgeon-reported graft rupture following ACL reconstruction: early results from the New Zealand ACL Registry. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05773-z

    Article  PubMed  Google Scholar 

  43. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee injury and Osteoarthritis Outcome Score (KOOS)-development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  CAS  PubMed  Google Scholar 

  44. Sanada T, Iwaso H, Fukai A, Honda E, Yoshitomi H, Inagawa M (2021) Anatomic anterior cruciate ligament reconstruction using rectangular bone–tendon–bone autograft versus double-bundle hamstring tendon autograft in young female athletes. Arthrosc Sports Med Rehabil 3:e47–e55

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sánchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I (2010) Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy 26:470–480

    Article  PubMed  Google Scholar 

  46. Sachs RA, Daniel DM, Stone ML, Garfein RF (1989) Patellofemoral problems after anterior cruciate ligament reconstruction. Am J Sports Med 17:760–765

    Article  CAS  PubMed  Google Scholar 

  47. Salem HS, Varzhapetyan V, Patel N, Dodson CC, Tjoumakaris FP, Freedman KB (2019) Anterior cruciate ligament reconstruction in young female athletes: patellar versus hamstring tendon autografts. Am J Sports Med 47:2086–2092

    Article  PubMed  Google Scholar 

  48. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017) Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 475(10):2459–2468

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schützenberger S, Grabner S, Schallmayer D, Kontic D, Keller F, Fialka C (2020) The risk of graft impingement still exists in modern ACL surgery and correlates with degenerative MRI signal changes. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06300-1

    Article  PubMed  Google Scholar 

  50. Smith PA, Cook CS, Bley JA (2020) All-inside quadrupled semitendinosis autograft demonstrates equivalent stability to patellar tendon autograft anterior cruciate ligament reconstruction: randomized controlled trial in athletes 24 years or younger. Arthroscopy. https://doi.org/10.1016/j.arthro.2020.01.048

    Article  PubMed  Google Scholar 

  51. Sonoda M, Morikawa T, Tsuchiya K, Moriya H (2007) Correlation between knee laxity and graft appearance on magnetic resonance imaging after double-bundle hamstring graft anterior cruciate ligament reconstruction. Am J Sports Med 35:936–942

    Article  PubMed  Google Scholar 

  52. Suomalainen P, Moisala AS, Paakkala A, Kannus P, Jarvela T (2011) Double bundle versus single-bundle anterior cruciate ligament reconstruction: randomized clinical and magnetic resonance imaging study with 2-year follow-up. Am J Sports Med 39:1615–1622

    Article  PubMed  Google Scholar 

  53. Svantesson E, Senorski EH, Webster KE, Karlsson J, Diermeier T, Rothrauff BB, Meredith SJ, Rauer T, Irrgang JJ, Spindler KP, Ma CB, Musahl V, Group, the Panther Symposium ACL Injury Clinical Outcomes Consensus, Fu FH, Ayeni OR, Villa FD, Villa SD, Dye S, Ferretti M, Getgood A, Järvelä T, Kaeding CC, Kuroda R, Lesniak B, Marx RG, Maletis GB, Pinczewski L, Ranawat A, Reider B, Seil R, Cv E, Wolf BR, Yung P, Zaffagnini S, Zheng MH (2020) Clinical outcomes after anterior cruciate ligament injury: panther symposium ACL injury clinical outcomes consensus group. Orthop J Sports Med. https://doi.org/10.1177/2325967120934751

    Article  PubMed  PubMed Central  Google Scholar 

  54. Taketomi S, Inui H, Yamagami R, Shirakawa N, Kawaguchi K, Nakagawa T, Tanaka S (2018) Bone-Patellar tendon-bone autograft versus hamstring tendon autograft for anatomical anterior cruciate ligament reconstruction with three-dimensional validation of femoral and tibial tunnel positions. J Knee Surg 31:866–874

    Article  PubMed  Google Scholar 

  55. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49

    Article  Google Scholar 

  56. Thaunat M, Fayard JM, Sonnery-Cottet B (2019) Hamstring tendons or bone-patellar tendon-bone graft for anterior cruciate ligament reconstruction? Orthop Traumatol Surg Res 105:S89–S94

    Article  PubMed  Google Scholar 

  57. van Groningen B, van der Steen MC, Janssen DM, van Rhijn LW, van der Linden AN, Janssen RPA (2020) Assessment of graft maturity after anterior cruciate ligament reconstruction using autografts: a systematic review of biopsy and magnetic resonance imaging studies. Arthrosc Sports Med Rehabil 2:e377–e388

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vascellari A, Grassi A, Combi A, Tomaello L, Canata GL, Zaggagnini S (2017) Web-based survey results: surgeon practice patterns in Italy regarding anterior cruciate ligament reconstruction and rehabilitation. Knee Surg Sports Traumatol Arthrosc 25(8):2520–2527

    Article  PubMed  Google Scholar 

  59. Wang J, Wang H, Lin L, Yu J (2019) Analysis of influence factor for the failure of anterior cruciate ligament reconstruction. ZhongguoXiu Fu Chong Jian WaiKeZaZhi 33(12):1543–1546

    Google Scholar 

  60. Warth RJ, Zandiyeh P, Rao M, Gabr RE, Tashman S, Kumaravel M et al (2020) Quantitative assessment of in vivo human anterior cruciate ligament autograft remodeling: a 3-dimensional UTE-T2* imaging study. Am J Sports Med 48:2939–2947

    Article  PubMed  Google Scholar 

  61. Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK (2015) Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: a 15 year follow-up of a randomized controlled trial. Am J Sports Med 44:83–90

    Article  PubMed  Google Scholar 

  62. Webster KE, Feller JA (2019) A research update on the state of play for return to sport after anterior cruciate ligament reconstruction. J Orthop Traumatol 20:10

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xie X, Xiao Z, Li Q (2015) Increased of osteoarthritis of knee joint after ACL reconstruction with bone-patellar tendon-bone autografts than hamstring autografts: a meta-analysis of 1,443 patients at a minimum of 5 years. Eur J Orthop Surg Traumatol 25:149–159

    Article  PubMed  Google Scholar 

  64. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    Article  PubMed  Google Scholar 

  65. Zhang Y, Liu S, Chen Q, Hu Y, Sun Y, Chen J (2020) Maturity Progression of the entire anterior cruciate ligament graft of insertion-preserved hamstring tendons by 5 years: a prospective randomized controlled study based on magnetic resonance imaging evaluation. Am J Sports Med 48(12):2970–2977

    Article  PubMed  Google Scholar 

Download references

Funding

There was no funding obtained for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Fukuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, H., Ogura, T., Asai, S. et al. Bone-patellar tendon–bone autograft maturation is superior to double-bundle hamstring tendon autograft maturation following anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30, 1661–1671 (2022). https://doi.org/10.1007/s00167-021-06653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06653-1

Keywords

Navigation