Skip to main content

Advertisement

Log in

Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Based on the large-scale integration of meta-QTL and Genome-Wide  Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered.

Abstract

Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ain Q, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743

    Article  PubMed  PubMed Central  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Assuero SG, Lorenzo M, Pérez Ramírez N, Velázquez L, Tognetti JA (2012) Tillering promotion by paclobutrazol in wheat and its relationship with plant carbohydrate status. N Z J Agric Res 55:347–358

    Article  CAS  Google Scholar 

  • Badji A, Otim M, Machida L, Odong T, Kwemoi DB, Okii D, Agbahoungba S, Mwila N, Kumi F, Ibanda A, Mugo S, Kyamanywa S, Rubaihayo P (2018) Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Front Plant Sci 9:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Beales J, Turner A, GriYths S, Snape JW, Laurie DA (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Bernard SM, Møller ALB, Dionisio G, Kichey T, Jahn TP, Dubois F, Baudo M, Lopes MS, Tercè-Laforgue T, Foyer CH, Parry MAJ, Forde BG, Araus JL, Hirel B, Schjoerring JK, Habash DZ (2008) Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol 67:89–105

    Article  CAS  PubMed  Google Scholar 

  • Borrill P, Adamski N, Uauy C (2015) Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208:1008–1022

    Article  PubMed  Google Scholar 

  • Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualisation platform. Plant Physiol 170:2172–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Cabral AL, Jordan MC, Larson G, Somers DJ, Gavin Humphreys D, McCartney CA (2018) Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/AC Domain’. PLoS ONE 13:e0190681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai J, Wang S, Su Z, Li T, Zhang X, Bai G (2019) Meta-analysis of QTL for Fusarium head blight resistance in Chinese wheat landraces. Crop J 7:784–798

    Article  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Silva MLd, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Andrew LP, Anthony GC, Martin AJP, Hu YG (2013) GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS ONE 8:e62285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu YG (2012) Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crop Res 137:195–201

    Article  Google Scholar 

  • Chen G, Zhang H, Deng Z, Wu R, Li D, Wang M, Tian J (2016) Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica 212:173–185

    Article  CAS  Google Scholar 

  • Chen J, Zhang F, Zhao C, Lv G, Sun C, Pan Y, Guo X, Chen F (2019) Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat. Plant Biotechnol J 17:2106–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Pan M, E Z, Zhou Y, Niu B, Chen C (2019) Functional divergence of two duplicated Fertilization Independent Endosperm genes in rice with respect to seed development. Plant J 104:124–137

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Daware AV, Srivastava R, Singh AK, Parida SK, Tyagi AK (2017) Regional association analysis of metaQTLs delineates candidate grain size genes in rice. Front Plant Sci 8:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • FAO (2020) Crop Prospects and Food Situation-Quarterly Global Report No. 4, Rome. https://doi.org/10.4060/cb2334en

  • Fan Y, Zhou G, Shabala S, Chen Z-H, Cai S, Li C, Zhou M (2016) Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Front Plant Sci 7:946

    Article  PubMed  PubMed Central  Google Scholar 

  • Flintham JE, Börner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25

    Article  Google Scholar 

  • Galbiati F, Chiozzotto R, Locatelli F, Spada A, Genga A, Fornara F (2016) Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice. Plant Cell Environ 39:1982–1993

    Article  CAS  PubMed  Google Scholar 

  • Gao ZY, Wang YF, Chen G, Zhang AP, Yang SL, Shang LG, Wang DY, Ruan BP, Liu CL, Jiang HZ, Dong GJ, Zhu L, Hu J, Zhang GH, Zeng DL, Guo LB, Xu GH, Teng S, Harberd NP, Qian Q (2019) The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun 10:5207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Guo ZF, Chen DJ, Alqudah AM, Roder MS, Ganal MW, Schnurbusch T (2017) Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol 214:257–270

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Shi WP, Zhang Z, Cheng JY, Sun DZ, Yu J, Li XL, Guo PY, Hao CY (2018) Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.). BMC Plant Biol 18:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTL associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci 46:595–602

    Article  Google Scholar 

  • Guo Y, Sun J, Zhang G, Wang Y, Li S (2013) Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat. Field Crop Res 154:119–125

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133:1569–1602

    Article  PubMed  Google Scholar 

  • Hanif M, Gao FM, Liu JD, Wen WE, Zhang YJ, Rasheed A, Xia XC, He ZH, Cao SH (2016) TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breeding 36:1

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:661

    Article  CAS  Google Scholar 

  • Jiang YM, Jiang QY, Hao CY, Hou J, Wang LF, Zhang HN, Zhang SN, Chen XH, Zhang XY (2015) A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet 128:131–143

    Article  CAS  PubMed  Google Scholar 

  • Khahani B, Tavakol E, Shariati V, Fornara F (2020) Genome wide screening and comparative genome analysis for Meta-QTLs, orthoMQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics 21:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khowaja F, Norton G, Courtois B, Price A (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Saripalli G, Jan I, Kumar K, Sharma PK, Balyan HS, Gupta PK (2020) Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 26:1713–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon CT, Kim SH, Kim D, Paek NC (2015) The rice floral repressor early flowering1 effects spikelet fertility by modulating gibberellin signaling. Rice 8:23

    Article  PubMed Central  Google Scholar 

  • Li QY, Li LQ, Liu Y, Lv Q, Zhang H, Zhu J, Li XJ (2017) Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Sci 263:226–235

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X (2019) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvorak J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Feng B, Xu ZB, Fan XL, Jiang F, Jin XF, Cao J, Wang F, Liu Q, Yang L, Wang T (2018) A genome-wide association study of wheat yield and quality-related traits in southwest China. Mol Breeding 38:1

    Article  CAS  Google Scholar 

  • Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G (2020a) Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses. Planta 252:65

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Salsman E, Wang R, Galagedara N, Zhang Q, Fiedler JD, Liu Z, Xu S, Faris JD, Li X (2020b) Meta-QTL analysis of tan spot resistance in wheat. Theor Appl Genet 133:2363–2375

    Article  CAS  PubMed  Google Scholar 

  • Liu JM, Park SJ, Huang J, Lee EJ, Xuan YH, Je BI, Kumar V, Priatama RA, Vimal RK, Kim SH, Min MK, Cho JH, Kim TH, Chandran AKN, Jung KH, Takatsuto S, Fujioka S, Han CD (2016) Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. J Exp Bot 67:1883–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130:1081–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T, Hagras A, Uguru MI, Agbo CU (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835

    Article  PubMed  Google Scholar 

  • Pearce S, Huttly AK, Prosser IM, Li YD, Vaughan SP, Gallova B, Patil A, Coghill JA, Dubcovsky J, Hedden P, Phillips AL (2015) Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol 15:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) Green revolution genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Pont C, Ain Q-u, Flores R, Burlot L, Alaux M, Quesneville H, Salse J (2017) Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front Plant Sci 8:1843

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166:1634–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Brautigam A, Uauy C, IWGSC (2018) The transcriptional landscape of polyploid wheat. Science 361:662

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza Q, Riaz A, Sabar M, Atif RM, Bachir K (2019) Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. Plant Sci 288:110214

    Article  CAS  PubMed  Google Scholar 

  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2010) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427

    Article  CAS  Google Scholar 

  • Said J, Song M, Wang H, Lin Z, Zhang X, Fang D, Zhang J (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 290:1003–1025

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Jiang DY, Wang SC, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3-Genes Genomics Genet 3:1105–1114

    Google Scholar 

  • Silverstone AL, Mak PYA, Martinez EC, Sun TP (1997) The new RGA locus encodes a negative regular of gibberellin response in Arabidopsis thaliana. Genetics 146:1087–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano JM, Alvaro F (2019) Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 9:10537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soriano JM, Royo C (2015) Dissecting the genetic architecture of leaf rust resistance in wheat by QTL meta-analysis. Phytopathology 105:1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128:353–363

    Article  CAS  PubMed  Google Scholar 

  • Sun CW, Dong ZD, Zhao L, Ren Y, Zhang N, Chen F (2020) The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18:1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D, Chen F (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15:953–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM (2021) Cereal pre-harvest sprouting: a global agricultural disaster regulated by complex genetic and biochemical mechanisms. J Exp Bot. https://doi.org/10.1093/jxb/erab024

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian RZ, Yang Y, Chen MH (2020) Genome-wide survey of the amino acid transporter gene family in wheat (Triticum aestivum L.): Identification, expression analysis and response to abiotic stress. Int J Biol Macromol 162:1372–1387

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Pandey P, Giri SP, Dwivedi JL (2011) Effect of GA3 and other Plant Growth regulators on Hybrid Rice Seed. Asian J Plant Sci 10:133–139

    Article  CAS  Google Scholar 

  • Venske E, Dos Santos RS, Farias DD, Rother V, Maia LC, Pegoraro C, Costad e Oliveira A (2019) Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci 10:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49

    Article  CAS  Google Scholar 

  • Wang Y, Huang Z, Deng D, Ding H, Zhang R, Wang S, Bian Y, Yin Z, Xu X (2013) Meta-analysis combined with syntenic metaQTL mining dissects candidate loci for maize yield. Mol Breeding 31:601–614

    Article  Google Scholar 

  • Wang X, Guan P, Xin M, Wang Y, Chen X, Zhao A, Liu M, Li H, Zhang M, Lu L, Zhang J, Ni Z, Yao Y, Hu Z, Peng H, Sun Q (2020a) Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theor Appl Genet. https://doi.org/10.1007/s00122-020-03687-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang Y, Wang X, Deng D (2020b) Integrated meta-QTL and genome-wide association study analyses reveal candidate genes for maize yield. J Plant Growth Regul 39:229–238

    Article  CAS  Google Scholar 

  • Wang X, Zhou W, Lu Z, Ouyang Y, O CS, Yao J (2015) A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. Plant Sci 239:200–208

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

  • Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F (2011) A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiol 157:718–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. Plos Genet 12:e1006386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Yu R, Wang H, Zhou C, Huang S, Jiao H, Yu S, Nie X, Wang Q, Liu S, Weining S, Singh RP, Bhavani S, Kang Z, Han D, Zeng Q (2020) A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnol J 1–15

  • Xiang DQ, Quilichini TD, Liu ZY, Gao P, Pan YL, Li Q, Nilsen KT, Venglat P, Esteban E, Pasha A, Wang YJ, Wen R, Zhang ZJ, Hao ZD, Wang E, Wei YD, Cuthbert R, Kochian LV, Sharpe A, Provart N, Weijers D, Gillmor CS, Pozniak C, Datla R (2019) The transcriptional landscape of polyploid wheats and their diploid ancestors during embryogenesis and grain development. Plant Cell 31:2888–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN. Proc Natl Acad Sci USA 10:6263–6268

    Article  CAS  Google Scholar 

  • Yang Y, Chai Y, Zhang X, Lu S, Zhao Z, Wei D, Chen L, Hu YG (2020) Multi-Locus GWAS of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci 11:1091

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu LX, Barbier H, Rouse MN, Singh S, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2014) A consensus map for Ug99 stem rust resistance loci in wheat. Theor Appl Genet 127:1561–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci 6:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007

    Article  PubMed  Google Scholar 

  • Zhang YJ, Liu JD, Xia XC, He ZH (2014) TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breeding 34:1097–1107

    Article  CAS  Google Scholar 

  • Zhang JP, Liu WH, Yang XM, Gao AN, Li XQ, Wu XY, Li LH (2011) Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol Biol Rep 38:2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M (2017) Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta 245:283–295

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Hua C, Li L, Sun Z, Yuan M, Bai G, Humphreys G, Li T (2020) Integration of meta-QTL discovery with omics: towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J. https://doi.org/10.1016/j.cj.2020.10.006

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31671695 and 31501307) and the China 111 Project of the Ministry of Education of China (B12007).

Author information

Authors and Affiliations

Authors

Contributions

Y.G.H. and L.C. designed the experiment, Y.Y. and A.A. performed the experiment and wrote the paper, D.W., Y.C. and J.Z. collected the previous studies, P.Q., C.C. and S.L. analyzed the data, Y.G.H. and L.C. reviewed the paper. All authors read and approved the article.

Corresponding authors

Correspondence to Liang Chen or Yin-Gang Hu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interests.

Ethical standards

We declare that these experiments complied with the ethical standards in China.

Additional information

Communicated by Susanne Dreisigacker.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1195 kb)

Supplementary file2 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Amo , ., Wei, D. et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor Appl Genet 134, 3083–3109 (2021). https://doi.org/10.1007/s00122-021-03881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03881-4

Navigation