Skip to main content
Log in

Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cytokinin oxidases are involved in the regulation of plant cytokinin levels, which are important in regulating plant growth and development, and may affect the yield of cereals. Here, we report the isolation and characterization of two putative cytokinin oxidase genes, TaCKX2.1 and TaCKX2.2, from wheat. Both TaCKX2.1 and TaCKX2.2 are mapped to the 0.24–0.55 region of the short arm of wheat chromosome 3D and their coding proteins are most closely related to OsCKX2. Phylogenetic tree analysis reveals that TaCKX2.1 and TaCKX2.2 belong to the clustered clade I of monocot plants. Tissue expression pattern show that both TaCKX2.1 and TaCKX2.2 genes are highly expressed in young spikes and culms of wheat. The detailed spatial expression pattern of TaCKX2.1 were further conducted by in situ hybridization and promoter-fused GUS expression in Arabidopsis experiments. A collection of 12 typical common wheat varieties exhibiting grain number per spike ranging from 31 to 139 were used for the transcription abundance detection of two TaCKX2 genes. A significantly positive correlation between expression level of two TaCKX2 genes and grain number per spike suggests that TaCKX2.1 and TaCKX2.2 on wheat chromosome 3DS may play an important role in wheat spike morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  2. Heyl A, Schmulling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488

    Article  PubMed  CAS  Google Scholar 

  3. Mok MC (1994) Cytokinins and plant development: an overview. CRC Press, Boca Raton, FL

    Google Scholar 

  4. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  PubMed  CAS  Google Scholar 

  5. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  6. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  7. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  PubMed  CAS  Google Scholar 

  8. Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci 11:581–586

    Article  PubMed  CAS  Google Scholar 

  9. Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11:1381–1392

    Article  PubMed  CAS  Google Scholar 

  10. Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

    PubMed  CAS  Google Scholar 

  11. Morris RO (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 137:509–538

    Article  Google Scholar 

  12. Werner T, Kollmer I, Bartrina I, Holst K, Schmulling T (2006) New insights into the biology of cytokinin degradation. Plant Biol (Stuttg) 8:371–381

    Article  CAS  Google Scholar 

  13. Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences USA 98:10487–10492

  14. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  15. Houba-Herin N, Pethe C, d’Alayer J, Laloue M (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626

    Article  PubMed  CAS  Google Scholar 

  16. Morris RO, Bilyeu KD, Laskey JG, Cheikh NN (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333

    Article  PubMed  CAS  Google Scholar 

  17. Schmulling T, Werner T, Riefler M, Krupkova E, Bartrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  PubMed  Google Scholar 

  18. Wang J, Wang H, Liu W, Wu J, Li L (2009) The large kernel number in the novel wheat-Agropyron germplasm 3228 and its inheritance analysis. Sci Agric Sin 42:1889–1895

    CAS  Google Scholar 

  19. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  21. Dellaport SL, Wood J, Hicks JB (1983) A rapid method for DNA extraction from plant tissue. Plant Mol Biol Rep 1:19–21

    Article  Google Scholar 

  22. Xu YY, Chong K, Xu Z, Tan KH (2001) Expression patterns of a vernalization-related genes responding to jasmonate. Acta Bot Sin 43:871–873

    CAS  Google Scholar 

  23. Yong WD, Xu YY, Xu WZ, Wang X, Li N, Wu JS, Liang TB, Chong K, Xu ZH, Tan KH, Zhu ZQ (2003) Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta 217:261–270

    PubMed  CAS  Google Scholar 

  24. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  25. Li XB, Cai L, Cheng NH, Liu JW (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674

    Article  PubMed  CAS  Google Scholar 

  26. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  27. Sorrells ME, La Rota M, Bermudez-Kandianis CE et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  28. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  29. Feng DS, Wang HG, Zhang XS, Kong LR, Tian JC, Li XF (2008) Using an inverse PCR method to clone the wheat cytokinin oxidase/dehydrogenase gene TaCKX1. Plant Mol Biol Rep 26:143–155

    Article  CAS  Google Scholar 

  30. Zhang L, Zhang B, Zhou R, Kong X, Gao L, Jia J (2008) Isolation and chromosomal localization of cytokinin oxidase/dehydrogenase gene (TaCKX5) in wheat. Scientia Agricultura Sinica 41:636–642

    CAS  Google Scholar 

  31. Galuszka P, Frebortova J, Werner T, Yamada M, Strnad M, Schmulling T, Frebort I (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression. Eur J Biochem 271:3990–4002

    Article  PubMed  CAS  Google Scholar 

  32. Galuszka P, Frebortova J, Luhova L, Bilyeu KD, English JT, Frebort I (2005) Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46:716–728

    Article  PubMed  CAS  Google Scholar 

  33. Smehilova M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, Sebela M, Sedlarova M, English JT, Frebort I (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J Exp Bot 60:2701–2712

    Article  PubMed  CAS  Google Scholar 

  34. Brugiere N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132:1228–1240

    Article  PubMed  CAS  Google Scholar 

  35. Joshi MV, Loria R (2007) Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol Plant Microbe Interact 20:751–758

    Article  PubMed  CAS  Google Scholar 

  36. Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE, Wach MJ, Gibson DM, Loria R (2005) A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol Microbiol 55:1025–1033

    Article  PubMed  CAS  Google Scholar 

  37. Tao M, Wang L, Wendt-Pienkowski E, George NP, Galm U, Zhang G, Coughlin JM, Shen B (2007) The tallysomycin biosynthetic gene cluster from Streptoalloteichus hindustanus E465–94 ATCC 31158 unveiling new insights into the biosynthesis of the bleomycin family of antitumor antibiotics. Mol Biosyst 3:60–74

    Article  PubMed  CAS  Google Scholar 

  38. Rensing SA, Lang D, Zimmer AD et al (2008) The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  39. Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    Article  PubMed  CAS  Google Scholar 

  40. Narasimhamoorthy B, Gill BS, Fritz AK et al (2006) Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tianfu Han (Chinese Academy of Agricultural Science, China) for assistance in RNA in situ hybridization experiments and Dr. Yun Lian (China Agricultural University, China) for providing the transformation vector. This work was supported by Grants from the National Basic Research Program of China (Grant no. 2006CB101701) and the China Postdoctoral Science Foundation (Grant no. 20070410589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Li.

Additional information

The nucleotide sequences reported in this paper have been submitted to (NCBI) under accession numbers FJ648070, GU084177 and FJ707293.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Liu, W., Yang, X. et al. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol Biol Rep 38, 2337–2347 (2011). https://doi.org/10.1007/s11033-010-0367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0367-9

Keywords

Navigation