Skip to main content
Log in

QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study determined the effects of growth stage and temperature on expression of high-temperature adult-plant resistance to stripe rust, mapped six QTL for durable resistance in winter wheat Skiles using a doubled haploid population, and selected breeding lines with different combinations of the QTL using marker-assisted selection.

Abstract

The winter wheat cultivar Skiles has a high level of high-temperature adult-plant (HTAP) resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The Skiles HTAP resistance was highly effective at the adult-plant stage even under low temperatures, but high temperatures induced earlier expression and increased levels of resistance. To map resistance genes, Skiles was crossed with the susceptible cultivar Avocet S and a doubled haploid (DH) population was developed. The DH population was tested in fields at Pullman, WA, in 2016, 2017 and 2018, Mount Vernon, WA, in 2017 and 2018 under natural infection, and an environmentally controlled greenhouse at the adult-plant stage with the currently predominant race PSTv-37. The population was genotyped using the 90 K Illumina iSelect wheat SNP chip and selected SSR markers on specific chromosomes. In total, 2526 polymorphic markers were used for QTL mapping and six QTL were detected. Two of the six QTL had major effects across all environments, with one mapped on chromosome 3BS, explaining up to 28.2% of the phenotypic variation and the other on chromosome 4BL, explaining up to 41.8%. Minor QTL were mapped on chromosomes 1BL, 5AL, 6B and 7DL. Genotyping 140 wheat cultivars from the US Pacific Northwest revealed high polymorphism of markers for five of the QTL, and five highly resistant lines with the five QTL were selected from Skiles-derived breeding lines using the markers. This study demonstrated that multiple QTL with mostly additive effects contributed to the high-level HTAP resistance in Skiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bansal UK, Hayden MJ, Bariana HS (2010) Chromosomal location of an uncharacterized stripe rust resistance gene in wheat. Euphytica 171:121–127

    Article  Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627

    Article  Google Scholar 

  • Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326

    Article  CAS  Google Scholar 

  • Chen XM, Line RF (1992) Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology 82:633–637

    Article  Google Scholar 

  • Chen XM, Line RF (1995) Gene action in wheat cultivars for durable high-temperature adult-plant resistance and interactions with race-specific, seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology 85:567–572

    Article  Google Scholar 

  • Chhetri M, Bariana H, Kandiah P, Bansal U (2016) Yr58: a new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance. Phytopathology 106:1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Churchill G, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JD (2002) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. In: Weigel D, Glazebrook J (eds) Arabidopsis: a laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  • Dong ZZ, Hegarty JM, Zhang JL, Zhang WJ, Chao SM, Chen XM, Zhou YH, Dubcovsky J (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arms 6BS (Yr78). Theor Appl Genet 130:2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng JY, Wang MN, See DR, Chao SM, Zheng YL, Chen XM (2018) Characterization of novel gene Yr79 and four additional QTL for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108:737–747

    Article  CAS  PubMed  Google Scholar 

  • Flowers MD, Peterson CJ, Hulting AG, Burns JW, Guy SO, Kuehner J (2010) Skiles: Soft white winter wheat. Online publication. Extension Service, Oregon State University, Corvallis. http://hdl.handle.net/1957/15300

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou L, Chen XM, Wang MN, See DR, Chao SM, Bulli P, Jing JX (2015) Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS ONE 10:e0126794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlestkina EK, Röder MS, Unger O, Meinel A, Börner A (2007) More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica 153:1–10

    Article  Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. U.S. Department of Agriculture Technical Bulletin No. 1788, The National Technical Information Service, Springfield, VA, p 44

  • Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li X, Jia JQ, Zhan HX, Guo HJ, Wang JM (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang MN, Feng JY, See DR, Chao SM, Chen XM (2018) Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theor Appl Genet 131:1835–1849

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wang MN, Chen XM, See D, Chao SM, Jing JX (2014) Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet 127:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen XM, Pumphrey M, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 Genes Genom Genet 5:449–465

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: Proceedings of the 12th international wheat genet symposium, 8–13 Sep 2013, Yokohama, Japan. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong XY, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Naruoka Y, Garland-Campbell KA, Carter AH (2015) Genome-wide association mapping for stripe rust (Puccinia striiformis f. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theor Appl Genet 128:1083–1101

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:21–33

    Article  CAS  PubMed  Google Scholar 

  • Randhawa MS, Bariana HS, Mago R, Bansal UK (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35:65

    Article  CAS  Google Scholar 

  • Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860

    Article  CAS  PubMed  Google Scholar 

  • Santra DK, Chen XM, Santra M, Garland-Campbell KA, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  • Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336

    CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wan AM, Chen XM (2014) Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis 98:1534–1542

    Article  PubMed  Google Scholar 

  • Wan AM, Chen XM, Yuen J (2016) Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis 100:966–975

    Article  PubMed  Google Scholar 

  • Wang MN, Chen XM (2017) Stripe rust resistance. In: Chen XM, Kang ZS (eds) Stripe rust. Springer, Dordrecht, pp 353–558

    Chapter  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang EN, Li GR, Li LP, Zhang ZY, Yang WY, Peng YL, Zhu YQ, Yang ZJ, Rosewarne GM (2016) Characterization of stripe rust resistance genes in the wheat cultivar Chuanmai 45. Int J Mol Sci 17:601

    Article  CAS  PubMed Central  Google Scholar 

  • Yin JL, Fang ZW, Sun C, Zhang P, Zhang X, Lu C, Wang SP, Mu DF, Zhu YX (2018) Rapid identification of a stripe rust resistant gene in a space-induced wheat mutant using specific locus amplified fragment (SLAF) sequencing. Sci Rep 8:3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zahravi M, Bariana HS, Shariflou MR, Balakerishna PV, Banks PM, Ghanadha MR (2003) Bulk segregant analysis of stripe rust resistance in wheat (Triticum aestivum) using microsatellite markers. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th international wheat genet symposium. Instituto Sperimentale per Cerealcoltura, Rome, pp 861–863

  • Zhang J, Friebe B, Raupp WJ, Harrison SA, Gill BS (1996) Wheat embryogenesis and haploid production in wheat × maize hybrids. Euphytica 90:315–324

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Department of Agriculture, Agricultural Research Service (Project No. 2090-22000-018-00D), Vogel Foundation (Project No. 13Z-3061-6665), Washington Grain Commission (Project No. 13C-3061-5665) and Washington State University, Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center, HATCH Project Number WNP00461, Washington State University, Pullman, WA 99164-6430, USA. The authors would like to thank Anna Kondratiuk for technical assistance in doubled haploid line development, Sheri Rynearson for assistance with KASP marker development, Shiaoman Chao for SNP genotyping, and Kent Evans and Jason Sprott for field preparation and weed control. The China Scholarship Council scholarship to Lu Liu is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical standards

All experiments and data analyses were conducted in Pullman and Mount Vernon, Washington, and the 90 K SNP genotype was done at Fargo, North Dakota. All authors contributed to the study and approved the submitted version. The manuscript has not been submitted to any other journal.

Additional information

Communicated by Frank Ordon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Reactions of Skiles and AvS to Puccinia striiformis f. sp. tritici in fields (PPTX 573 kb)

Supplementary material 2 (XLSX 88 kb)

Supplementary material 3 (XLSX 271 kb)

Supplementary material 4 (XLSX 37 kb)

Supplementary material 5 (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yuan, C.Y., Wang, M.N. et al. QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles. Theor Appl Genet 132, 1677–1691 (2019). https://doi.org/10.1007/s00122-019-03307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03307-2

Navigation