Skip to main content
Log in

A MYB transcription factor is a candidate to control pungency in Capsicum annuum

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Identification of a novel pungency-controlling gene Pun3, which acts as a master regulator of capsaicinoid biosynthetic genes in Capsicum annuum.

Abstract

Capsaicinoid is a unique compound that gives hot peppers (Capsicum spp.) their spicy taste. The Pun1 and Pun2 loci are known to control pungency in Capsicum species. Whereas Pun1 encodes an acyltransferase, the identity of Pun2 is currently unknown. Here, we used recombinant inbred lines and F2 plants derived from a cross between the non-pungent C. annuum accession ‘YCM334’ and the pungent C. annuum cultivar ‘Tean’ to identify a novel non-pungency locus. Inheritance studies showed that non-pungency in C. annuum ‘YCM334’ is controlled by a single recessive gene, which we named Pun3. Using a high-density SNP map derived from genotyping-by-sequencing, Pun3 was mapped to chromosome 7. By comparing physical information about the Pun3 region in the C. annuum ‘Zunla-1’ and C. chinense ‘PI159236’ reference genomes, we identified candidate genes in this target region. One cDNA sequence from ‘PI159236’ was homologous to an unannotated gene in ‘Zunla-1.’ This sequence was also homologous to CaMYB31, which is expressed only in ‘Tean’ and harbors one stop codon in the non-pungent accession ‘YCM334.’ RNA-Seq analysis showed that major structural genes in the capsaicinoid biosynthetic pathway were significantly downregulated in ‘YCM334’ compared to pungent pepper. Therefore, CaMYB31 is a candidate gene for Pun3, which may act as a master regulator of capsaicinoid biosynthetic genes in pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arce-Rodriguez ML, Ochoa-Alejo N (2015) Silencing AT3 gene reduces the expression of pAmt, BCAT, Kas, and Acl genes involved in capsaicinoid biosynthesis in chili pepper fruits. Biol Plant 59:477–484

    Article  CAS  Google Scholar 

  • Arce-Rodriguez ML, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706

    Article  CAS  PubMed  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  CAS  PubMed  Google Scholar 

  • Borovsky Y, Oren-Shamir M, Ovadia R, De Jong W, Paran I (2004) The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theor Appl Genet 109:23–29

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW, Coon D (2015) Novel formation of ectopic (nonplacental) capsaicinoid secreting vesicles on fruit walls explains the morphological mechanism for super-hot chile peppers. Hortic Sci 140:253–256

    Google Scholar 

  • Cao X, Qiu Z, Wang X, Van Giang T, Liu X, Wang J, Wang X, Gao J, Guo Y, Du Y, Wang G, Huang Z (2017) A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. J Exp Bot 68:5745–5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Qin C, Tang X, Zhou H, Hu Y, Zhao Z, Cui J, Li B, Wu Z, Yu J, Hu K (2016) Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci Rep 6:33293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Han K, Jeong H-J, Sung J, Keum YS, Cho M-C, Kim J-H, Kwon J-K, Kim B-D, Kang B-C (2013) Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol Breed 31:537–548

    Article  CAS  Google Scholar 

  • Han K, Jeong HJ, Yang HB, Kang SM, Kwon JK, Kim S, Choi D, Kang BC (2016) An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res 23:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558

    Article  CAS  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang S, Han K, Jo YD, Jeong H-J, Siddique MI, Kang B-C (2015) Substitution of a dysfunctional pAMT allele results in low-pungency but high levels of capsinoid in Capsicum chinense ‘Habanero’. Plant Breed Biotechnol 3:119–128

    Article  Google Scholar 

  • Jeong H-J, Hwang D-Y, Ahn J-T, Chun J-Y, Han K-E, Lee W-M, Kwon J-K, Lee Y-J, Kang B-C (2012) Development of a simple method for detecting capsaicinoids using Gibb’s reagent in pepper. Korean J Hortic Sci Technol 30:294–300

    Article  CAS  Google Scholar 

  • Kang YJ, Ahn YK, Kim KT, Jun TH (2016) Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance. BMC Plant Biol 16:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sorensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D (2017a) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC (2017b) Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. New Phytol 213:886–899

    Article  CAS  PubMed  Google Scholar 

  • Kirri E, Goto T, Yasuba K, Tanaka Y (2017) Non-pungency in a Japanese chili pepper landrace (Capsicum annuum) is caused by a novel loss-of-function Pun1 allele. Hort J 86:61–69

    Article  Google Scholar 

  • Koeda S, Sato K, Tomi K, Tanaka Y, Takisawa R, Hosokawa M, Doi M, Nakazaki T, Kitajima A (2014) Analysis of non-pungency, aroma, and origin of a Capsicum chinense cultivar from a caribbean island. J Jpn Soc Hortic 83:244–251

    Article  CAS  Google Scholar 

  • Koeda S, Sato K, Tanaka Y, Takisawa R, Kitajima A (2015) A Comt1 loss of function mutation is insufficient for loss of pungency in Capsicum. Am J Plant Sci 06:1243–1255

    Article  CAS  Google Scholar 

  • Koeda S, Sato K, Saito H, Nagano AJ, Yasugi M, Kudoh H, Tanaka Y (2018) Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theor Appl Genet. https://doi.org/10.1007/s00122-018-3195-2

    Article  PubMed  Google Scholar 

  • Lang Y, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yazawa S, Miwa T (2009) Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. Plant J 59:953–961

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, An J-T, Siddique MI, Han K, Choi S, Kwon J-K, Kang B-C (2017) Identification and molecular genetic mapping of Chili veinal mottle virus (ChiVMV) resistance genes in pepper (Capsicum annuum). Mol Breed 37:121

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Venkatesh J, Jo YD, Koeda S, Hosokawa M, Kang JH, Goritschnig S, Kang BC (2016) Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense). Theor Appl Genet 129:1541–1556

    Article  CAS  PubMed  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK (2016) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6:38081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J 5:92

    Article  CAS  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarpras M, Gaur R, Sharma V, Chhapekar SS, Das J, Kumar A, Yadava SK, Nitin M, Brahma V, Abraham SK, Ramchiary N (2016) comparative analysis of fruit metabolites and pungency candidate genes expression between Bhut Jolokia and other Capsicum species. PLoS ONE 11:e0167791

    Article  CAS  Google Scholar 

  • Seong ES, Guo J, Wang M-H (2008) The chilli pepper (Capsicum annuum) MYB transcription factor (CaMYB) is induced by abiotic stresses. J Plant Biochem Biotechnol 17:193–196

    Article  CAS  Google Scholar 

  • Stellari GM, Mazourek M, Jahn MM (2010) Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104:460–471

    Article  CAS  PubMed  Google Scholar 

  • Stewart C Jr, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  PubMed  Google Scholar 

  • Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991

    Article  CAS  PubMed  Google Scholar 

  • Stommel JR, Lightbourn GJ, Winkel BS, Griesbach RJ (2009) Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J Am Soc Hortic Sci 134:244–251

    Article  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010a) Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. J Agric Food Chem 58:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010b) Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sonoyama T, Muraga Y, Koeda S, Goto T, Yoshida Y, Yasuba K (2015) Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense. Mol Breed 35:142

    Article  CAS  Google Scholar 

  • Tanaka Y, Nakashima F, Kirii E, Goto T, Yoshida Y, Yasuba KI (2017) Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Plant Cell Rep 36:267–279

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Fukuta S, Koeda S, Goto T, Yoshida Y, Ki Yasuba (2018) Identification of a novel mutant pAMT allele responsible for low-pungency and capsinoid production in chili pepper: accession ‘No. 4034’ (Capsicum chinense). Hortic J 87:222–228

    Article  CAS  Google Scholar 

  • Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, Jv Baren, Salzberg S, Wold B, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truong HTH, Kim K-T, Kim S, Chae Y, Park J-H, Oh D-G, Cho M-C (2010) Comparative mapping of consensus SSR markers in an intraspecific F8 recombinant inbred line population in Capsicum. Hortic Environ Biotechnol 51:193–206

    CAS  Google Scholar 

  • Zhang ZX, Zhao SN, Liu GF, Huang ZM, Cao ZM, Cheng SH, Lin SS (2016) Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Sci Rep 6:34121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Agriculture, Food, and Rural Affairs Research Center Support Program (Vegetable Breeding Research Center, 710011-03), funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA). This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01322901), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Cheorl Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments were performed according to the laws of Germany.

Additional information

Communicated by Richard G. F. Visser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, K., Jang, S., Lee, JH. et al. A MYB transcription factor is a candidate to control pungency in Capsicum annuum. Theor Appl Genet 132, 1235–1246 (2019). https://doi.org/10.1007/s00122-018-03275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-03275-z

Navigation