Skip to main content
Log in

Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Capsicum chinense is a domesticated hot pepper species in the Capsicum genus that originated in the Amazon and is consumed in USA, the Caribbean and South America. Although a characteristic of this species is high pungency, some non-pungent or low-pungent strains, called “Aji Dulce” (sweet pepper in Spanish), exist in the Caribbean region. In the present study, low-pungent C. chinense accessions were analyzed in order to elucidate the genetic mechanisms responsible for low pungency. All low-pungent C. chinense accessions in this study carried non-functional alleles of putative aminotransferase (pAMT), which catalyzes the formation of vanillylamine from vanillin in the capsaicinoid biosynthetic pathway. These low-pungent accessions produced capsinoids, low-pungent capsaicinoid analogs. The pamt mutation in each strain was characterized using allele-specific markers, and one novel pamt allele (pamt 7) was identified. The pamt 7 had a new hAT family transposon insertion in the second exon region, which caused the loss of pAMT expression. pamt 7 is apparently an ancestral allele for pamt 6 because the 7-bp insertion in pamt 6 can be regarded as a footprint of the transposon. A phylogenetic analysis of pamt alleles was performed to examine their relationships. Combined with previously reported pamt alleles, the Tcc family transposon insertion and its excision were involved in the generation of various pamt alleles in C. chinense. A phylogenetic analysis of pamt alleles showed that at least five occurred within C. chinense after speciation of the Capsicum genus. In conclusion, the results of the present study identified pamt as the main and most frequent gene controlling low pungency in C. chinense. Allelic variations in loss-of function pamt and their wide distribution demonstrated the potential of C. chinense bioresources for genetic improvements to pungency and metabolic profiles in hot pepper breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham-Juarez MD, Rocha-Granados MD, Lopez MG, Rivera- Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695

  • Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706

    Article  CAS  PubMed  Google Scholar 

  • Ben-Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis THN et al (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122

    Article  CAS  PubMed  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu KD, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW, Baral JB (2007) ‘Bhut Jolokia’—The world’s hottest known chile pepper is a putative naturally occurring interspecific hybrid. HortScience 42:222–224

    CAS  Google Scholar 

  • Bosland PW, Votava EJ (2000) Peppers: vegetable and spice capsicums. CABI Publishing, New York

    Google Scholar 

  • Canto-Flick A, Balam-Uc E, Bello-Bello JJ, Lecona-Guzman C, Solís-Marroquin D, Aviles-Vinas S, Gomez-Uc E, Lopez-Puc G, Santana-Buzzy N, Iglesias-Andreu LG (2008) Capsaicinoids content in Habanero pepper (Capsicum chinense Jacq.): hottest known cultivars. HortScience 43:1344–1349

    Google Scholar 

  • Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57

    Article  CAS  Google Scholar 

  • Grappin P, Audeon C, Chupeau MC, Grandbastien MA (1996) Molecular and functional characterization of slide, anAc-like autonomous transposable element from tobacco. Mol Gen Genet 252:386–397

    CAS  PubMed  Google Scholar 

  • Han K, Jeong HJ, Sung J, Keum YS, Cho MC, Kim JH, Kwon JK, Kim BD, Kang BC (2013) Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol Breed 31:537–548

    Article  CAS  Google Scholar 

  • Haramizu S, Kawabata F, Masuda Y, Ohnuki K, Watanabe T, Yazawa S, Fushiki T (2011) Capsinoids, non-pungent capsaicin analogs, reduce body fat accumulation without weight rebound unlike dietary restriction in mice. Biosci Biotechnol Biochem 75:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kobata K, Todo T, Yazawa S, Iwai K, Watanabe T (1998) Novel capsaicinoid-like substances, capsiate and dihydrocapsiate, from the fruits of a nonpungent cultivar, CH-19 Sweet, of pepper (Capsicum annuum L.). J Agric Food Chem 46:1695–1697

    Article  CAS  Google Scholar 

  • Koeda S, Sato K, Tomi K, Tanaka Y, Takisawa R, Hosokawa M, Doi M, Nakazaki T, Kitajima A (2014) Analysis of non-pungency, aroma, and origin of a Capsicum chinense cultivar from a Caribbean island. J Jpn Soc Hortic Sci 83:244–251

    Article  CAS  Google Scholar 

  • Lang YQ, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yazawa S, Miwa T (2009) Functional loss of pamt results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. Plant J 59:953–961

    Article  CAS  PubMed  Google Scholar 

  • Lee CJ, Yoo EY, Shin JH, Lee J, Hwang HS, Kim BD (2005) Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol Cells 19:262–267

    CAS  PubMed  Google Scholar 

  • Luo XJ, Peng J, Li YJ (2011) Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol 650:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon S, Jung KH, Lee D, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Moses M, Umaharan P, Dayanandan S (2014) Microsatellite based analysis of the genetic structure and diversity of Capsicum chinense in the Neotropics. Genet Resour Crop Evol 61:741–755

    Article  CAS  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Hirano H, Yamamura S (2006) Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in Gentian scabra. Mol Genet Genomics 275:231–241

    Article  CAS  PubMed  Google Scholar 

  • Sasahara I, Furuhata Y, Iwasaki Y, Inoue N, Sato H, Watanabe T, Takahashi M (2010) Assessment of the biological similarity of three capsaicin analogs (Capsinoids) found in non-pungent chili pepper (CH-19 Sweet) fruits. Biosci Biotechnol Biochem 74:274–278

    Article  CAS  PubMed  Google Scholar 

  • Stellari GM, Mazourek M, Jahn MM (2010) Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Heredity 104:460–471

    Article  CAS  PubMed  Google Scholar 

  • Stewart C, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  PubMed  Google Scholar 

  • Stewart C, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58:979–991

    Article  CAS  PubMed  Google Scholar 

  • Sutoh K, Kobata K, Yazawa S, Watanabe T (2006) Capsinoid is biosynthesized from phenylalanine and valine in a non-pungent pepper, Capsicum annuum L. cv. CH-19 Sweet. Biosci Biotechnol Biochem 70:1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010a) Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. J Agric Food Chem 58:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010b) Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, non-pungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Funct. Genomics, Brief. doi:10.1093/bfgp/elu002

    Google Scholar 

  • Voorrips RE, Finkers R, Sanjaya L, Groenwold R (2004) QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet 109:1275–1282

    Article  PubMed  Google Scholar 

  • Votava EJ, Bosland PW (2004) ‘NuMex suave red’ and ‘NuMex suave orange’ mild Capsicum chinense cultivars. HortScience 39:627–628

    Google Scholar 

  • Wahyuni Y, Ballester AR, Tikunov Y, de Vos RCH, Pelgrom KTB, Maharijaya A, Sudarmonowati E, Bino RJ, Bovy AG (2013) Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 9:130–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wessler SR, Baran G, Varagona M, Dellaporta SL (1986) Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J 5:2427–2432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyatt LE, Eannetta NT, Stellari GM, Mazourek M (2012) Development and application of a suite of non-pungency markers for the Pun1 gene in pepper (Capsicum spp.). Mol Breeding 30:1525–1529

    Article  Google Scholar 

  • Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A, Gulick P (2012) Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56:61–74

    Article  Google Scholar 

  • Yazawa S, Suetome N, Okamoto K, Namiki T (1989) Content of capsaicinoids and capsaicinoid-like substances in fruit of pepper (Capsicum annuum L.) hybrids made with “CH-19 Sweet” as a parent. J Jpn Soc Hortic Sci 58:601–607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in-Aid for Research Activity Start-up (No. 25892020), JAPAN, and a Grant (PGRAsia Project) from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tanaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Sonoyama, T., Muraga, Y. et al. Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense . Mol Breeding 35, 142 (2015). https://doi.org/10.1007/s11032-015-0339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0339-9

Keywords

Navigation