Skip to main content
Log in

Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates

  • Review
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-year-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphological, behavioural and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined analysis of phenotypic traits and DNA methylation across multiple biological contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Albalat R, Martí-Solans J, Cañestro C (2012) DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief Funct Genom 11:142–155

    CAS  Google Scholar 

  • Almouzni G, Altucci L, Amati B, Ashley N, Baulcombe D, Beaujean N, Bock C, Bongcam-Rudloff E, Bousquet J, Braun S et al (2014) Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics 15:487

    PubMed  PubMed Central  Google Scholar 

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    PubMed  Google Scholar 

  • Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M (2021) Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 36:1124–1140

    PubMed  Google Scholar 

  • Andriantsoa R (2020) The marbled crayfish Procambarus virginalis: a model organism in tumour genome evolution and a biocontrol agent of schistosomiasis. Doctoral thesis. University of Heidelberg, Heidelberg, Germany. http://archiv.ub.uniheidelberg.de/volltextserver/29567/

  • Andriantsoa R, Tönges S, Panteleit J, Theissinger K, Coutinho Carneiro V, Rasamy J, Lyko F (2019) Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol 19:8

    PubMed  PubMed Central  Google Scholar 

  • Asselman J, De Coninck DIM, Pfrender ME, De Schamphelaere KAC (2016) Gene body methylation patterns in Daphnia are associated with gene family size. Genome Biol Evol 8:1185–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augusto RC, Minod A, Rey O, Chaparro C, Vidal-Dupiol J, Allienne J-F, Duval D, Pinaud S, Tönges S, Andriantsoa R et al (2021) A simple ATAC-seq protocol for population epigenetics, version 2. Wellcome Open Res 5:121

    PubMed  PubMed Central  Google Scholar 

  • Ballouz S, Pena MT, Knight FM, Adams LB, Gillis JA (2019) The transcriptional legacy of developmental stochasticity. bioRxiv preprint; https://doi.org/10.1101/2019.12.11.873265

  • Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S et al (2019) DNA methylation aging clocks: challenges and recommendations. Genome Biol 20:249

    PubMed  PubMed Central  Google Scholar 

  • Bergman DA, Moore PA (2020) Serotonergic-linked alterations of aggression of the crayfish. Mar Freshw Behav Physiol 53:215–229

    Google Scholar 

  • Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ (2017) Evolution of DNA methylation across insects. Mol Biol Evol 34:654–665

    CAS  PubMed  Google Scholar 

  • Biémont C (2010) From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity 105:1–3

    PubMed  Google Scholar 

  • Blake LE, Roux J, Hernando-Herraez I, Banovich NE, Garcia Perez R, Hsiao CJ, Eres I, Cuevas C, Marques-Bonet T, Yoav Gilad Y (2020) A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res 30:1–13

    Google Scholar 

  • Bohman P, Edsman L, Martin P, Scholtz G (2013) The first Marmorkrebs (Decapoda: Astacida: Cambaridae) in Scandinavia. BioInvasions Rec 2:227–232

    Google Scholar 

  • Chen ZJ, Ha M, Soltis D (2007) Polyploidy: genome obesity and its consequences. New Phytol 174:717–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chucholl C, Morawetz K, Groß H (2012) The clones are coming – strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat Invasions 7:511–519

    Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Cáceres CE, Carmel L, Casola C, Choi J-H, Detter JC, Dong Q, Dusheyko S, Eads BD, Fröhlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kültz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Andrews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) Science 331(6017):555–561. https://doi.org/10.1126/science.1197761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F, Aury J-M, Wincker P, Roudier F, Jansen RC, Colot V, Johannes F (2014) Mapping the epigenetic basis of complex traits. Science 343:1145–1148

    CAS  PubMed  Google Scholar 

  • De Mendoza A, Hatleberg WL, Pang K, Leininger S, Bogdanovic O, Pflueger J, Buckberry S, Technau U, Hejnol A, Adamska M et al (2019) Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat Ecol Evol 3:1464–1473

    PubMed  PubMed Central  Google Scholar 

  • Dümpelmann C, Bonacker F (2012) Erstnachweis des Marmorkrebses Procambarus fallax f. virginalis (Decapoda: Cambaridae) in Hessen. Forum Flusskrebse 18:3–12

    Google Scholar 

  • Falckenhayn C (2016) The methylome of the marbled crayfish Procambarus virginalis. Doctoral thesis. University of Heidelberg, Heidelberg, Germany. http://archiv.ub.uni-heidelberg.de/volltextserver/22489/

  • Falckenhayn C, Boerjan B, Raddatz G, Frohme M, Schoofs L, Lyko F (2013) Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. J Exp Biol 216:1423–1429

    CAS  PubMed  Google Scholar 

  • Farca Luna AJ, Hurtado-Zavala JI, Reischig T, Heinrich R (2009) Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp. J Biol Rhythms 24:64–72

    PubMed  Google Scholar 

  • Feinberg AP, Irizarry RA (2010) Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci USA 107(Suppl 1):1757–1764

    CAS  PubMed  Google Scholar 

  • Feiner N, Radersma R, Vasquez L, Ringnér M, Nystedt B, Raine A, Tobi WW, Heijmans BT, Uller T (2021) Environmentally-induced DNA methylation is inherited across generations in an aquatic keystone species (Daphnia magna). bioRxiv preprint; https://doi.org/10.1101/2021.12.05.471257/

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frias-Laserre D, Villagra CA (2017) The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front Microbiol 8:2483

    Google Scholar 

  • Gärtner K (1990) A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24:71–77

    PubMed  Google Scholar 

  • Gatzmann F (2019) DNA methylation in the marbled crayfish Procambarus virginalis. Doctoral thesis. University of Heidelberg, Heidelberg, Germany. http://archiv.ub.uni-heidelberg.de/volltextserver/26426/

  • Gatzmann F, Falckenhayn C, Gutekunst J, Hanna K, Raddatz G, Coutinho Carneiro V, Lyko F (2018) The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics Chromatin 11:57

    PubMed  PubMed Central  Google Scholar 

  • Graham AM, Barreto FS (2019) Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod. Mol Ecol 28:584–599

    CAS  PubMed  Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35 (Database Issue):D332–D338

  • Grimmer AU (2015) Analysis of DNA methylation dynamics during Marmorkrebs (Procambarus fallax forma virginalis) development. Master's Thesis. Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany

  • Grunau C, Le Luyer J, Laporte M, Joly D (2020) The epigenetics dilemma. Genes 11:23

    CAS  Google Scholar 

  • Gutekunst J (2018) Clonal genome evolution of the marbled crayfish, Procambarus virginalis. Doctoral thesis. University of Heidelberg, Heidelberg, Germany. http://www.ub.uni-heidelberg.de/archiv/23501/

  • Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy JR, Lyko F (2018) Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat Ecol Evol 2:567–573

    PubMed  Google Scholar 

  • Gutekunst J, Maiakovska O, Hanna K, Provataris P, Horn H, Wolf S, Skelton CE, Dorn NJ, Lyko F (2021) Phylogeographic reconstruction of the marbled crayfish origin. Commun Biol 4:1096

    PubMed  PubMed Central  Google Scholar 

  • Haubrock PJ, Kubec J, Veselý L, Buřič M, Tricarico E, Kouba A (2019) Water temperature as a hindrance, but not limiting factor for the survival of warm water invasive crayfish introduced in cold periods. J Great Lakes Res 45:788–794

    Google Scholar 

  • Hawes NA, Amadoru A, Tremblay LA, Pochon X, Dunphy B, Fidler AE, Smith KF (2019) Epigenetic patterns associated with an ascidian invasion: a comparison of closely related clades in their native and introduced ranges. Sci Rep 9:14275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hearn J, Chow FW-N, Barton H, Tung M, Wilson PJ, Blaxter M, Buck A, Little TJ (2018) Daphnia magna microRNAs respond to nutritional stress and ageing but are not transgenerational. Mol Ecol 27:1402–1412

    CAS  PubMed  Google Scholar 

  • Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, Pauls SU, Kelley JL, Frandsen PB (2021) Long reads are revolutionizing 20 years of insect genome sequencing. Genome Biol Evol 13:evab138

    PubMed  PubMed Central  Google Scholar 

  • Inoue J, Sato Y, Sinclair R, Tsukamoto K, Nishida M (2015) Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci USA 112:14918–14923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isakova A, Fehlmann T, Keller A, Quake SR (2020) A mouse tissue atlas of small noncoding RNA. Proc Natl Acad Sci USA 117:25634–25645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    CAS  PubMed  Google Scholar 

  • Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–319

    CAS  PubMed  Google Scholar 

  • Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J et al (2013) Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153:773–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez SA, Faulkes Z (2010) Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs. Invertebr Rearing 1:10–18

    Google Scholar 

  • Jones JPG, Rasamy JR, Harvey A, Toon A, Oidtmann B, Randrianarison MH, Raminosoa N, Ravoahangimalala OR (2009) The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol Invasions 11:1475–1482

    Google Scholar 

  • Kaldre K, Meženin A, Paaver T, Kawai T (2016) A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in Nordic climate. In: Kawai T, Faulkes Z, Scholtz G (eds) Freshwater crayfish: a global overview. CRC Press, Boca Raton, FL, pp 54–62

    Google Scholar 

  • Kang JG, Park JS, Ko J-H, Kim Y-S (2019) Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep 9:11960

    PubMed  PubMed Central  Google Scholar 

  • Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M et al (2016) The genome of the crustacean Parhyale hawaiensis: a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 16:e20062

    Google Scholar 

  • Kawai T, Scholtz G, Morioka S, Ramanamandimby F, Lukhaup C, Hanamura Y (2009) Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J Crust Biol 29:562–567

    Google Scholar 

  • Kvist J, Gonçalves Athanàsio C, Solari OS, Brown JB, Colbourne JK, Pfrender ME, Mirbahai L (2018) Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol Evol 10:1988–2007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist J, Gonçalves Athanàsio C, Pfrender ME, Brown JB, Colbourne JK, Mirbahai L (2020) A comprehensive epigenomic analysis of phenotypically distinguishable, genetically identical female and male Daphnia pulex. BMC Genomics 21:7

    Google Scholar 

  • Lee B-Y, Choi B-S, Kim M-S, Park JC, Jeong C-B, Han J, Lee J-S (2019) The genome of the freshwater water flea Daphnia magna: a potential use for freshwater molecular ecotoxicology. Aquat Toxicol 210:69–84

    CAS  PubMed  Google Scholar 

  • Legrand C, Andriantsoa R, Lichter P, Lyko F (2021) Time-resolved, integrated analysis of clonal genome evolution in parthenogenetic animals and in cancer. bioRxiv preprint; https://doi.org/10.1101/2021.10.08.463633/

  • Lennartsson A, Ekwall K (2009) Histone modification patterns and epigenetic codes. Biochim Biophys Acta 1790:863–868

    CAS  PubMed  Google Scholar 

  • Leung C, Breton S, Angers B (2016) Facing environmental predictability with different sources of epigenetic variation. Ecol Evol 6:5234–5245

    PubMed  PubMed Central  Google Scholar 

  • Li S, Zhu S, Li C, Zhang Z, Zhou L, Wang S, Wang S, Zhang Y, Wen X (2013) Characterization of microRNAs in mud crab Scylla paramamosain under Vibrio parahaemolyticus infection. PLoS One 8:e73392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, Deutekom ES, Kaandorp JA, Voolstra CR et al (2018) Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv 4:eaar8028

    PubMed  PubMed Central  Google Scholar 

  • Liew YJ, Howells EJ, Wang X, Michell C, Burt JA, Idaghdour Y, Aranda M (2020) Intergenerational epigenetic inheritance in reef-building corals. Nat Climate Change 10:254–259

    Google Scholar 

  • Linzmaier SM, Musseau C, Matern S, Jeschke JM (2020) Trophic ecology of invasive marbled and spiny-cheek crayfish populations. Biol Invasions 22:3339–3356

    Google Scholar 

  • Liu S, Yu Y, Zhang S, Cole JB, Tenesa A, Wang T, McDaneld TG, Ma L, Liu GE, Fang L (2020) Epigenomics and genotype-phenotype association analyses reveal conserved genetic architecture of complex traits in cattle and human. BMC Biol 18:80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, Koltšina M, Nilsson TK, Vilo J, Salumets A, Tõnisson N (2014) DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15:r54

    PubMed  PubMed Central  Google Scholar 

  • Lőkkös A, Müller T, Kovács K, Várkonyi L, Specziár A, Martin P (2016) The alien, parthenogenetic marbled crayfish (Decapoda: Cambaridae) is entering Kis-Balaton (Hungary), one of Europe’s most important wetland biotopes. Knowl Manag Aquat Ecosyst 417:16

    Google Scholar 

  • Lyko F (2017) The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363:544–552

    PubMed  Google Scholar 

  • Maiakovska O, Andriantsoa R, Tönges S, Hanna K, Pârvulescu L, Novitsky R, Weiperth A, Sciberras A, Deidun A, Ercoli F, Kouba A, Lyko F (2021) Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Commun Biol 4:74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin P, Dorn NJ, Kawai T, van der Heiden C, Scholtz G (2010) The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib Zool 79:107–118

    Google Scholar 

  • Martin P, Kohlmann L, Scholtz G (2007) The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94(10):843–846. https://doi.org/10.1007/s00114-007-0260-0

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Thonagel S, Scholtz G (2016) The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism. J Zool Syst Evol Res 54:13–21

    Google Scholar 

  • Norouzitallab P, Baruah K, Biswas P, Vanrompay D, Bossier P (2016) Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system. Sci Rep 6:21166

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    PubMed  Google Scholar 

  • Pârvulescu L, Togor A, Lele S-F, Scheu S, Șinca D, Panteleit J (2017) First established population of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda, Cambaridae) in Romania. BioInvasions Rec 6:357–362

    Google Scholar 

  • Peñaloza C, Gutierrez AP, Eöry L, Wang S, Guo X, Archibald AL, Bean TP, Houston RD (2021) A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. GigaScience 10:1–9

    Google Scholar 

  • Perry WL, Feder JL, Lodge DM (2001) Implications of hybridization between introduced and resident Orconectes crayfishes. Conserv Biol 15:1656–1666

    Google Scholar 

  • Piferrer F, Beaumont A, Falguière J-C, Flajšhans M, Haffray P, Colombo L (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293:125–156

    Google Scholar 

  • Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P et al (2021) The American lobster genome reveals insights on longevity, neural, and immune adaptations. Sci Adv 7:eabe8290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price SA, Friedman ST, Wainwright PC (2015) How predation shaped fish: the impact of fin spines on body form evolution across teleosts. Proc R Soc B 282:20151428

    PubMed  PubMed Central  Google Scholar 

  • Provataris P, Meusemann K, Niehuis O, Grath S, Misof B (2018) Signatures of DNA methylation across insects suggest reduced DNA methylation levels in Holometabola. Genome Biol Evol 10:1185–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raddatz G, Guzzardo PM, Olova N, Rosado Fantappié M, Rampp M, Schaefer M, Reik W, Hannon GJ, Lyko F (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci USA 110:8627–8631

    PubMed  PubMed Central  Google Scholar 

  • Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806

    CAS  PubMed  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W (2012) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil Trans R Soc Lond B 368:20110330

    Google Scholar 

  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool A 303:393–405

    Google Scholar 

  • Sellars MJ, Degnan BM, Preston NP (2006) Production of triploid Kuruma shrimp, Marsupenaeus (Penaeus) japonicus (Bate) nauplii through inhibition of polar body I, or polar body I and II extrusion using 6-dimethylaminopurine. Aquaculture 256:337–345

    CAS  Google Scholar 

  • Simpson SJ, Sword GA, Lo N (2011) Polyphenism in insects. Curr Biol 21:R738–R749

    CAS  PubMed  Google Scholar 

  • Skinner MK, Gurerrero-Bosagna C, Muksitul Haque M, Nilsson EE, Koop JAH, Knutie SA, Clayton DH (2014) Epigenetics and the evolution of Darwin’s finches. Genome Biol Evol 6:1972–1989

    PubMed  PubMed Central  Google Scholar 

  • Smith TA, Martin M, Nguyen M, Mendelson TC (2016) Epigenetic divergence as a potential first step in darter speciation. Mol Ecol 25:1883–1894

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Yoshinari A, Obara M, Takuno S, Shigenobu S, Sasakura Y, Kerr AR, Webb S, Bird A, Nakayama A (2013) Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells. Epigenetics Chromatin 6:38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorson JLM, Smithson M, Beck D, Sadler-Riggleman I, Nilsson E, Dybdahl M, Skinner MK (2017) Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci Rep 7:14139

    PubMed  PubMed Central  Google Scholar 

  • Thorson JLM, Smithson M, Sadler-Riggleman I, Beck D, Dybdahl M, Skinner MK (2019) Regional epigenetic variation in asexual snail populations among urban and rural lakes. Environ Epigenet 5:dvz020

    PubMed  PubMed Central  Google Scholar 

  • Tollrian R (1995) Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691–1705

    Google Scholar 

  • Tönges S, Masagounder K, Lenich F, Gutekunst J, Tönges M, Lohbeck J, Miller AK, Böhl F, Lyko F (2021b) Evaluating invasive marbled crayfish as a potential livestock for sustainable aquaculture. Front Ecol Evol 9:651981

  • Tönges S, Venkatesh G, Andriantsoa R, Hanna K, Gatzmann F, Raddatz G, Carneiro VC, Lyko F (2021a) Location-Dependent DNA Methylation Signatures in a Clonal Invasive Crayfish. Front Cell Dev Biol 9. https://doi.org/10.3389/fcell.2021.794506

  • Urbano A, Smith J, Weeks RJ, Chatterjee A (2019) Gene-specific targeting of DNA methylation in the mammalian genome. Cancers 11:1515

    CAS  PubMed Central  Google Scholar 

  • Van Dongen J, Gordon SD, McRae AF, Odintsova VV, Mbarek H, Breeze CE, Sugden K, Lundgren S, Castillo-Fernandez JE, Hannon E et al (2021) Identical twins carry a persistent epigenetic signature of early genome programming. Nat Commun 12:5618

    PubMed  PubMed Central  Google Scholar 

  • Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, Verdonck R, Holtof M, Song H, Behmer ST et al (2021) First draft genome assembly of the desert locust, Schistocerca gregaria, version 2. F1000Res 9:775

    PubMed Central  Google Scholar 

  • Veselý L, Buřič M, Kouba A (2015) Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures? Sci Rep 5:1–7

    Google Scholar 

  • Veselý L, Ruokonen TJ, Weiperth A, Kubec J, Szajbert B, Guo W, Ercoli F, Bláha M, Buřič M, Hämäläinen H, Kouba A (2021) Trophic niches of three sympatric invasive crayfish of EU concern. Hydrobiol 848:727–737

    Google Scholar 

  • Vickaryous MK, Hall BK (2006) Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev 81:425–455

    PubMed  Google Scholar 

  • Vogt G (2008a) The marbled crayfish: a new model organism for research on development, epigenetics and evolutionary biology. J Zool 276:1–13

    Google Scholar 

  • Vogt G (2008b) Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J Morphol 269:790–811

    PubMed  Google Scholar 

  • Vogt G (2009) Research on aging and longevity in the parthenogenetic marbled crayfish, with special emphasis on stochastic developmental variation, allocation of metabolic resources, regeneration, and social stress. In: Bentely JV, Keller MA (eds) Handbook on longevity: genetics, diet & disease. Nova Science Publishers, Hauppauge, NY, pp 353–372

    Google Scholar 

  • Vogt G (2010) Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontol 11:643–669

    Google Scholar 

  • Vogt G (2015a) Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 40:159–204

    PubMed  Google Scholar 

  • Vogt G (2015b) Bimodal annual reproduction pattern in laboratory-reared marbled crayfish. Invert Reprod Dev 59:218–223

    Google Scholar 

  • Vogt G (2017) Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigenet 3:dvx002

    PubMed  PubMed Central  Google Scholar 

  • Vogt G (2018a) Annotated bibliography of the parthenogenetic marbled crayfish, Procambarus virginalis, a new research model, potent invader and popular pet. Zootaxa 4418:301–352

    PubMed  Google Scholar 

  • Vogt G (2018b) Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: a review and perspectives. J Biosci 43:189–223

    CAS  PubMed  Google Scholar 

  • Vogt G (2019a) Estimating the young evolutionary age of marbled crayfish from museum samples. J Nat Hist 53:2353–2363

    Google Scholar 

  • Vogt G (2019b) Functional cytology of the hepatopancreas of decapod crustaceans. J Morphol 280:1405–1444

    CAS  PubMed  Google Scholar 

  • Vogt G (2020a) Disentangling the environmentally induced and stochastic developmental components of phenotypic variation. In: Levine H, Jolly MK, Kulkarni P, Nanjundiah V (eds) Phenotypic switching: implications in biology and medicine. Academic Press, San Diego, CA, pp 207–251

    Google Scholar 

  • Vogt G (2020b) Biology, ecology, evolution, systematics and utilization of the parthenogenetic marbled crayfish, Procambarus virginalis. In: Ribeiro FB (ed) Crayfish: evolution, habitat and conservation strategies. Nova Science Publishers, Hauppauge, NY, pp 137–227

    Google Scholar 

  • Vogt G (2021) Epigenetic variation in animal populations: sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 46:24

    CAS  PubMed  Google Scholar 

  • Vogt G (2022) Evolution, functions and dynamics of epigenetic mechanisms in animals. In: Tollefsbol T (ed), Handbook of Epigenetics, 3rd edition. Academic Press, Cambridge, MA, in press

  • Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582

    PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311

    PubMed  Google Scholar 

  • Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD (2008) Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–523

    CAS  PubMed  Google Scholar 

  • Vogt G, Falckenhayn C, Schrimpf A, Schmid K, Hanna K, Panteleit J, Helm M, Schulz R, Lyko F (2015) The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol Open 4:1583–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt G, Lukhaup C, Pfeiffer M, Dorn NJ, Williams BW, Schulz R, Schrimpf A (2018) Morphological and genetic characterization of the marbled crayfish, including a determination key. Zootaxa 4524:329–350

    PubMed  Google Scholar 

  • Vogt G, Dorn NJ, Pfeiffer M, Lukhaup C, Williams BW, Schulz R, Schrimpf A (2019) The dimension of biological change caused by autotriploidy: a meta-analysis with the triploid Procambarus virginalis and its diploid parent Procambarus fallax. Zool Anz 281:53–67

    Google Scholar 

  • Wang X, Li Q, Lian J, Li L, Jin L, Cai H, Xu F, Qi H, Zhang L, Wu F et al (2014) Genome-wide and single-base resolution DNA methylomes of the Pacific oyster Crassostrea gigas provide insight into the evolution of invertebrate CpG methylation. BMC Genomics 15:1119

    PubMed  PubMed Central  Google Scholar 

  • Waterborg JH (2012) Evolution of histone H3: emergence of variants and conservation of posttranslational modification sites. Biochem Cell Biol 90:79–95

    CAS  PubMed  Google Scholar 

  • Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z, Zhang J (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS One 10:e0118101

    PubMed  PubMed Central  Google Scholar 

  • Xiao J, Song C, Liu S, Tao M, Hu J, Wang J, Liu W, Zeng M, Liu Y (2013) DNA methylation analysis of allotetraploid hybrids of red crucian carp (Carassius auratus red var.) and common carp (Cyprinus carpio L.). PLoS One 8:e56409

  • Yagound B, Remnant EJ, Buchmann G, Oldroyd BP (2020) Intergenerational transfer of DNA methylation marks in the honey bee. Proc Natl Acad Sci USA 117:32519–32527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Xu S, Spitze K, Asselman J, Jiang X, Ackerman MS, Lopez J, Harker B, Raborn RT, Thomas WK, Ramsdell J, Pfrender ME, Lynch M (2017) A new reference genome assembly for the microcrustacean Daphnia pulex G3:1405–1416

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 238:916–919

    Google Scholar 

  • Zhang Z, Zhang MQ (2011) Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes. BMC Bioinform 12:155

    CAS  Google Scholar 

  • Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, Liu C, Wang Q, Lv X, Zhang X et al (2019) Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun 21:356

    Google Scholar 

  • Zuber ST, Muller K, Laushman RH, Roles AJ (2012) Hybridization between an invasive and a native species of the crayfish genus Orconectes in North-Central Ohio. J Crust Biol 32:962–971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author has written the paper.

Corresponding author

Correspondence to Günter Vogt.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest/Competing interests.

The authors declare no competing interests.

Additional information

Communicated by: Alexie Papanicolaou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, G. Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Sci Nat 109, 16 (2022). https://doi.org/10.1007/s00114-021-01782-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-021-01782-6

Keywords

Navigation