Skip to main content
Log in

The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Genetically identical animals are very much in demand as laboratory objects because they allow conclusions about environmental and epigenetic effects on development, structures, and behavior. Furthermore, questions about the relative fitness of various genotypes can be addressed. However, genetically identical animals are relatively rare, in particular, organisms that combine a high reproduction rate and a complex organization. Based on its exclusively parthenogenetic reproduction mode, it has been suggested that the Marmorkrebs (Crustacea, Decapoda, Astacida), a recently discovered crayfish, is an excellent candidate for research addressing the aforementioned questions. However, until now, a study using molecular markers that clearly proves the genetic uniformity of the offspring has been lacking. Here, with this first molecular study, we show that this crayfish indeed produces genetically uniform clones. We tested this with 19 related individuals of various generations of a Marmorkrebs population by means of six different microsatellite markers. We found that all examined specimens were identical in their allelic composition. Furthermore, half of the analyzed loci were heterozygous. These results and the absence of meioses in previous histological studies of the ovaries lead us to conclude the Marmorkrebs propagates apomictically. Thus, a genetically uniform organism with complex morphology, development, and behavior is now available for various laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abzhanov A, Kaufman TC (2000) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    Article  PubMed  CAS  Google Scholar 

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184

    Article  PubMed  Google Scholar 

  • Archetti M (2003) A selfish origin for recombination. J Theor Biol 223:335–346

    Article  PubMed  CAS  Google Scholar 

  • Archetti M (2004) Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J Evol Biol 17:1084–1097

    Article  PubMed  CAS  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  PubMed  CAS  Google Scholar 

  • Belfiore NM, May B (2000) Variable microsatellite loci in red swamp crayfish, Procambarus clarcii, and their characterization in other crayfish taxa. Mol Ecol 9:2231–2234

    Article  PubMed  CAS  Google Scholar 

  • Braband A, Kawai T, Scholtz G (2006) The phylogenetic position of the East Asian freshwater crayfish Cambaroides within the Northern Hemisphere Astacoidea (Crustacea, Decapoda, Astacida) based on molecular data. J Zool Syst Evol Res 44:17–24

    Article  Google Scholar 

  • Cole CJ (1984) Unisexual Lizards. Sci Am 250:94–100

    Article  Google Scholar 

  • Cuellar O (1971) Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J Morph 133:139–166

    Article  PubMed  CAS  Google Scholar 

  • Dowling TE, Moritz C, Palmer JD, Riesenberg LH (1996) Nucleic acids III: analysis of fragments and restriction sites. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer, Sunderland, pp 249–320

    Google Scholar 

  • Drummond JM, Issa FA, Song C-K, Herberholz J, Yeh S-R, Edwards DH (2002) Neural mechanisms of dominance hierarchies in crayfish. In: Wiese K (ed) The Crustacean Nervous System. Springer, Berlin Heidelberg New York, pp 124–135

    Google Scholar 

  • Gandolfi A, Sanders IR, Rossi V, Menozzi P (2003) Evidence of recombination in putative ancient asexuals. Mol Biol Evol 20:754–761

    Article  PubMed  CAS  Google Scholar 

  • Gherardi F (2002) Behaviour. In: Holdich DM (ed) Biology of freshwater crayfish. Blackwell Science, Oxford, pp 258–272

    Google Scholar 

  • Krasne FB, Edwards DH (2002) Crayfish escape behaviour: lessons learned. In: Wiese K (ed) The Crustacean Nervous System. Springer, Berlin Heidelberg New York, pp 3–22

    Google Scholar 

  • Lenk P, Eidenmüller B, Staudter H, Wicker R, Wink M (2005) A parthenogenetic Varanus. Amphibia-Reptilia 26:507–514

    Article  Google Scholar 

  • Lokki J, Suomalainen E, Saura A, Lankinen P (1975) Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Solenobia triquetrella (Lepidoptera: Psychidae). Genetics 79:513–525

    PubMed  CAS  Google Scholar 

  • Lundberg U (2004) Behavioural elements of the noble crayfish, Astacus astacus (Linnaeus 1758). Crustaceana 77:137–162

    Article  Google Scholar 

  • Lushai G, Loxdale HD (2002) The biological improbability of a clone. Genet Res 79:1–9

    Article  PubMed  Google Scholar 

  • Maynard Smith J (1998) Evolutionary genetics. Oxford University Press, Oxford

    Google Scholar 

  • Nam YK, Cho YS, Kim DS (2000) Isogenic transgenic homozygous fish induced by artificial parthenogenesis. Transgenic Res 9:463–469

    Article  PubMed  CAS  Google Scholar 

  • Omilian AR, Cristescu MEA, Dudycha JL, Lynch M (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 103:18638–18643

    Article  PubMed  CAS  Google Scholar 

  • Reeder TW, Cole CJ, Dessauer HC (2002) Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am Mus Novit 3365:1–61

    Article  Google Scholar 

  • Sandeman R, Sandeman D (1991) Stages in the development of the freshwater crayfish Cherax destructor. Roux’s Arch Dev Biol 200:27–37

    Article  Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Arch Dev Biol 202:36–48

    Article  Google Scholar 

  • Scholtz G, Braband A, Tolley L, Reiman A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806

    Article  PubMed  CAS  Google Scholar 

  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (Marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405

    Article  Google Scholar 

  • Simon J-C, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc 79:151–163

    Article  Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC, Boca Raton

    Google Scholar 

  • Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morph 262:566–582

    Article  PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (Marbled Crayfish), the first parthenogenetic decapod crustacean. J Morph 261:286–311

    Article  PubMed  Google Scholar 

  • Vilpoux K, Sandeman R, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223

    Article  PubMed  CAS  Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We would like to thank Petra Kersten (Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin) for technical support in genotyping. We are grateful to Cassandra Extavour for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Scholtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, P., Kohlmann, K. & Scholtz, G. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94, 843–846 (2007). https://doi.org/10.1007/s00114-007-0260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0260-0

Keywords

Navigation