Skip to main content
Log in

Phenotypic characteristics of commonly used inbred mouse strains

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Armstrong NJ, Brodnicki TC, Speed TP (2006) Mind the gap: analysis of marker-assisted breeding strategies for inbred mouse strains. Mamm Genome 17(4):273–287

    Article  PubMed  Google Scholar 

  2. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24(1):23–25

    Article  CAS  PubMed  Google Scholar 

  3. Stevens JC, Banks GT, Festing MF, Fisher EM (2007) Quiet mutations in inbred strains of mice. Trends Mol Med 13(12):512–519

    Article  CAS  PubMed  Google Scholar 

  4. Wong GT (2002) Speed congenics: applications for transgenic and knock-out mouse strains. Neuropeptides 36(2–3):230–236

    Article  CAS  PubMed  Google Scholar 

  5. Logue SF, Owen EH, Rasmussen DL, Wehner JM (1997) Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience 80(4):1075–1086

    Article  CAS  PubMed  Google Scholar 

  6. Owen EH, Logue SF, Rasmussen DL, Wehner JM (1997) Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80(4):1087–1099

    Article  CAS  PubMed  Google Scholar 

  7. Bolivar VJ, Caldarone BJ, Reilly AA, Flaherty L (2000) Habituation of activity in an open field: a survey of inbred strains and F1 hybrids. Behav Genet 30(4):285–293

    Article  CAS  PubMed  Google Scholar 

  8. Wong AA, Brown RE (2006) Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes Brain Behav 5(5):389–403

    Article  CAS  PubMed  Google Scholar 

  9. Zhou X, Jen PH, Seburn KL, Frankel WN, Zheng QY (2006) Auditory brainstem responses in 10 inbred strains of mice. Brain Res 1091(1):16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keum S, Park J, Kim A, Park J, Kim KK, Jeong J, Shin HS (2016) Variability in empathic fear response among 11 inbred strains of mice. Genes Brain and Behavior 15(2):231–242

    Article  CAS  Google Scholar 

  11. Atchley WR, Fitch WM (1991) Gene trees and the origins of inbred strains of mice. Science 254(5031):554–558

    Article  CAS  PubMed  Google Scholar 

  12. Chang PL, Kopania E, Keeble S, Sarver BAJ, Larson E, Orth A, Belkhir K, Boursot P, Bonhomme F, Good JM, Dean MD (2017) Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mamm Genome 28(9–10):416–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  14. Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P, Scott VE, Wiles MV (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14(9):1806–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tupal S, Faingold CL (2006) Evidence supporting a role of serotonin in modulation of sudden death induced by seizures in DBA/2 mice. Epilepsia 47(1):21–26

    Article  CAS  PubMed  Google Scholar 

  16. Faingold CL, Randall M, Tupal S (2010) DBA/1 mice exhibit chronic susceptibility to audiogenic seizures followed by sudden death associated with respiratory arrest. Epilepsy Behav 17(4):436–440

    Article  PubMed  Google Scholar 

  17. Braem K, Carter S, Lories RJ (2012) Spontaneous arthritis and ankylosis in male DBA/1 mice: further evidence for a role of behavioral factors in “stress-induced arthritis”. Biol Proced Online 14. doi: Artn 10

  18. Corthay A, Hansson AS, Holmdahl R (2000) T lymphocytes are not required for the spontaneous development of entheseal ossification leading to marginal ankylosis in the DBA/1 mouse. Arthritis Rheum 43(4):844–851

    Article  CAS  PubMed  Google Scholar 

  19. Ammassari-Teule M, Tozzi A, Rossi-Arnaud C, Save E, Thinus-Blanc C (1995) Reactions to spatial and nonspatial change in two inbred strains of mice: further evidence supporting the hippocampal dysfunction hypothesis in the DBA/2 strain. Psychobiology 23(4):284–289

    Google Scholar 

  20. Paylor R, BaskallBaldini L, Yuva L, Wehner JM (1996) Developmental differences in place-learning performance between C57BL/6 and DBA/2 mice parallel the ontogeny of hippocampal protein kinase C. Behavioral Neuroscience 110(6):1415–1425

    Article  CAS  PubMed  Google Scholar 

  21. Schwegler H, Crusio WE, Brust I (1990) Hippocampal mossy fibers and radial-maze learning in the mouse: a correlation with spatial working memory but not with non-spatial reference memory. Neuroscience 34(2):293–298

    Article  CAS  PubMed  Google Scholar 

  22. Dellu F, Contarino A, Simon H, Koob GF, Gold LH (2000) Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 73(1):31–48

    Article  CAS  PubMed  Google Scholar 

  23. Paylor R, Tracy R, Wehner J, Rudy JW (1994) Dba/2 and C57bl/6 mice differ in contextual fear but not auditory fear conditioning. Behavioral Neuroscience 108(4):810–817

    Article  CAS  PubMed  Google Scholar 

  24. Yanovsky Y, Brankack J, Haas HL (1995) Differences of CA3 bursting in DBA/1 and DBA/2 inbred mouse strains with divergent shuttle box performance. Neuroscience 64(2):319–325

    Article  CAS  PubMed  Google Scholar 

  25. Voikar V, Polus A, Vasar E, Rauvala H (2005) Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences. Genes Brain Behav 4(4):240–252

    Article  CAS  PubMed  Google Scholar 

  26. Ma L, Piirainen S, Kulesskaya N, Rauvala H, Tian L (2015) Association of brain immune genes with social behavior of inbred mouse strains. J Neuroinflammation 12:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology 111(3):323–331

    Article  CAS  PubMed  Google Scholar 

  28. Podhorna J, Brown RE (2002) Strain differences in activity and emotionality do not account for differences in learning and memory performance between C57BL/6 and DBA/2 mice. Genes Brain and Behavior 1(2):96–110

    Article  CAS  Google Scholar 

  29. Moon JI, Kim IB, Gwon JS, Park MH, Kang TH, Lim EJ, Choi KR, Chun MH (2005) Changes in retinal neuronal populations in the DBA/2J mouse. Cell Tissue Res 320(1):51–59

    Article  CAS  PubMed  Google Scholar 

  30. Simosky JK, Stevens KE, Adler LE, Freedman R (2003) Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl) 165(4):386–396

    Article  CAS  Google Scholar 

  31. Turner JG, Willott JF (1998) Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice. Hear Res 118(1-2):101–113

    Article  CAS  PubMed  Google Scholar 

  32. Johnson KR, Longo-Guess C, Gagnon LH, Yu H, Zheng QY (2008) A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics 92(4):219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shin JB, Longo-Guess CM, Gagnon LH, Saylor KW, Dumont RA, Spinelli KJ, Pagana JM, Wilmarth PA, David LL, Gillespie PG, Johnson KR (2010) The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. J Neurosci 30(29):9683–9694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91

    Article  CAS  PubMed  Google Scholar 

  36. Vanniya SP, Srisailapathy CRS, Kunka Mohanram R (2018) The tip link protein cadherin-23: from hearing loss to cancer. Pharmacol Res 130:25–35

    Article  CAS  Google Scholar 

  37. Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130(1–2):94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132(2):169–180

    Article  CAS  Google Scholar 

  39. Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least ten inbred strains of mice. Genomics 70(2):171–180

    Article  CAS  PubMed  Google Scholar 

  40. Callahan R, Smith GH (2000) MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 19(8):992–1001

    Article  CAS  PubMed  Google Scholar 

  41. Gray DA, Chan EC, MacInnes JI, Morris VL (1986) Restriction endonuclease map of endogenous mouse mammary tumor virus loci in GR, DBA, and NFS mice. Virology 148(1):237–242

    Article  CAS  PubMed  Google Scholar 

  42. Macinnes JI, Morris VL, Flintoff WF, Kozak CA (1984) Characterization and chromosomal location of endogenous mouse mammary tumor virus loci in GR, NFS, and DBA mice. Virology 132(1):12–25

    Article  CAS  PubMed  Google Scholar 

  43. Welsh J (2013) Animal models for studying prevention and treatment of breast cancer. In: Conn PM (ed) Animal models for the study of human disease. Academic Press, London, UK

    Google Scholar 

  44. Strong LC (1936) Production of the CBA strain of inbred mice: long life associated with low tumour incidence. The British Journal of Experimental Pathology 17(1):60–63

    Google Scholar 

  45. Whitmore AC, Whitmore SP (1985) Subline divergence within strong, L.C. C3h and Cba inbred mouse strains - a review. Immunogenetics 21(5):407–428

    Article  CAS  PubMed  Google Scholar 

  46. Henry KR, Mcginn MD (1992) The mouse as a model for human audition - a review of the literature. Audiology 31(4):181–189

    Article  CAS  PubMed  Google Scholar 

  47. Ohlemiller KK, Dahl AR, Gagnon PM (2010) Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. J Assoc Res Otolaryngol 11(4):605–623

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rithidech KN, Cronkite EP, Bond VP (1999) Advantages of the CBA mouse in leukemogenesis research. Blood Cells Mol Dis 25(1):38–45

    Article  CAS  PubMed  Google Scholar 

  49. Miranda S, Malan Borel I, Margni R (1998) Altered modulation of the in vitro antibody synthesis by placental factors from the CBA/J x DBA/2 abortion-prone mating combination. Am J Reprod Immunol 39(5):341–349

    Article  CAS  PubMed  Google Scholar 

  50. Clark DA, McDermott MR, Szewczuk MR (1980) Impairment of host-versus-graft reaction in pregnant mice. II. Selective suppression of cytotoxic T-cell generation correlates with soluble suppressor activity and with successful allogeneic pregnancy. Cell Immunol 52(1):106–118

    Article  CAS  PubMed  Google Scholar 

  51. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203(9):2165–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiger N, Chaouat G, Kolb JP, Wegmann TG, Guenet JL (1985) Immunogenetic studies of spontaneous abortion in mice. Preimmunization of females with allogeneic cells. J Immunol 134(5):2966–2970

    CAS  PubMed  Google Scholar 

  53. Gendron RL, Baines MG (1988) Infiltrating decidual natural killer cells are associated with spontaneous abortion in mice. Cell Immunol 113(2):261–267

    Article  CAS  PubMed  Google Scholar 

  54. Gendron RL, Baines MG (1989) Morphometric analysis of the histology of spontaneous fetal resorption in a murine pregnancy. Placenta 10(3):309–318

    Article  CAS  PubMed  Google Scholar 

  55. Dixon ME, Chien EK, Osol G, Callas PW, Bonney EA (2006) Failure of decidual arteriolar remodeling in the CBA/J x DBA/2 murine model of recurrent pregnancy loss is linked to increased expression of tissue inhibitor of metalloproteinase 2 (TIMP-2). Am J Obstet Gynecol 194(1):113–119

    Article  CAS  PubMed  Google Scholar 

  56. Bonney EA, Brown SA (2014) To drive or be driven: the path of a mouse model of recurrent pregnancy loss. Reproduction 147(5):R153–R167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clark DA (2014) The use and misuse of animal analog models of human pregnancy disorders. J Reprod Immunol 103:1–8

    Article  CAS  PubMed  Google Scholar 

  58. Clark DA, Manuel J, Lee L, Chaouat G, Gorczynski RM, Levy GA (2004) Ecology of danger-dependent cytokine-boosted spontaneous abortion in the CBA x DBA/2 mouse model. I. Synergistic effect of LPS and (TNF-alpha + IFN-gamma) on pregnancy loss. Am J Reprod Immunol 52(6):370–378

    Article  PubMed  Google Scholar 

  59. Serri GA, Ely DL (1984) A comparative study of aggression related changes in brain serotonin in CBA, C57BL, and DBA mice. Behav Brain Res 12(3):283–289

  60. Nagy ZM, Misanin JR (1970) Visual perception in the retinal degenerate C3H mouse. J Comp Physiol Psychol 72(2):306–310

  61. Parham K, Willott JF (1988) Acoustic startle response in young and aging C57BL/6J and CBA/J mice. Behav Neurosci 102(6):881–886

    Article  CAS  PubMed  Google Scholar 

  62. Sweet RJ, Price JM, Henry KR (1988) Dietary restriction and presbyacusis: periods of restriction and auditory threshold losses in the CBA/J mouse. Audiology 27(6):305–312

    Article  CAS  PubMed  Google Scholar 

  63. Clapcote SJ, Lazar NL, Bechard AR, Roder JC (2005) Effects of the rd1 mutation and host strain on hippocampal learning in mice. Behav Genet 35(5):591–601

    Article  PubMed  Google Scholar 

  64. Eppig JJ, Leiter EH (1977) Exocrine pancreatic insufficiency syndrome in CBA/J mice. Ultrastructural study. Am J Pathol 86(1):17–30

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Leiter EH, Cunliffe-Beamer T (1977) Exocrine pancreatic insufficiency syndrome in CBA/J mice. III. Pathological and genetic analysis. Gastroenterology 73(2):260–266

    Article  CAS  PubMed  Google Scholar 

  66. Leiter EH, Dempsey EC, Eppig JJ (1977) Exocrine pancreatic insufficiency syndrome in CBA/J mice. II. Biochemical studies. Am J Pathol 86(1):31–46

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rudofsky UH (1978) Renal tubulointerstitial lesions in CBA/J mice. Am J Pathol 92(2):333–348

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Heimrich B, Schwegler H, Crusio WE, Buselmaier W (1988) Substrain divergence in C3H inbred mice. Behav Genet 18(6):671–674

    Article  CAS  PubMed  Google Scholar 

  69. Steinmuller D, Tyler JD, David CS (1981) Cell-mediated cytotoxicity to non-MHC alloantigens on mouse epidermal cells. II. Genetic basis of the response of C3H mice. J Immunol 126(5):1754–1758

    CAS  PubMed  Google Scholar 

  70. Vazquez-Torres A, Vallance BA, Bergman MA, Finlay BB, Cookson BT, Jones-Carson J, Fang FC (2004) Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. Journal of Immunology 172(10):6202–6208

    Article  CAS  Google Scholar 

  71. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    Article  CAS  PubMed  Google Scholar 

  72. Frankel WN, Mahaffey CL, McGarr TC, Beyer BJ, Letts VA (2014) Unraveling genetic modifiers in the Gria4 mouse model of absence epilepsy. Plos Genet 10 (7). doi: ARTN e1004454.

  73. McElwee KJ, Boggess D, Miller J, King LE Jr, Sundberg JP (1999) Spontaneous alopecia areata-like hair loss in one congenic and seven inbred laboratory mouse strains. J Investig Dermatol Symp Proc 4(3):202–206

    Article  CAS  PubMed  Google Scholar 

  74. Sundberg JP, Cordy WR, King LE Jr (1994) Alopecia areata in aging C3H/HeJ mice. J Invest Dermatol 102(6):847–856

    Article  CAS  PubMed  Google Scholar 

  75. Strong LC (1935) The establishment of the C(3) H inbred strain of mice for the study of spontaneous carcinoma of the mammary gland. Genetics 20(6):586–591

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  CAS  PubMed  Google Scholar 

  77. Heston WE, Vlahakis G, Deringer MK (1960) High incidence of spontaneous hepatomas and the increase of this incidence with urethan in C3H, C3Hf, and C3He male mice. J Natl Cancer Inst 24:425–435

    Article  CAS  PubMed  Google Scholar 

  78. Strong LC (1955) The origin of some inbred mice. II. Old techniques and new. J Natl Cancer Inst 15(5, Suppl):1417–1426

    CAS  PubMed  Google Scholar 

  79. Potter M (1985) History of the BALB/c family. Curr Top Microbiol Immunol 122:1–5

    CAS  PubMed  Google Scholar 

  80. Teuscher C, Smith SM, Tung KS (1987) Experimental allergic orchitis in mice: III. Differential susceptibility and resistance among BALB/c sublines. J Reprod Immunol 10(3):219–230

    Article  CAS  PubMed  Google Scholar 

  81. Hazlett LD, McClellan S, Kwon B, Barrett R (2000) Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Invest Ophthalmol Vis Sci 41(3):805–810

    CAS  PubMed  Google Scholar 

  82. Sellers RS, Clifford CB, Treuting PM, Brayton C (2012) Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet Pathol 49(1):32–43

    Article  CAS  PubMed  Google Scholar 

  83. Glant TT, Mikecz K, Arzoumanian A, Poole AR (1987) Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 30(2):201–212

    Article  CAS  PubMed  Google Scholar 

  84. Riley RL, Kruger MG, Elia J (1991) B cell precursors are decreased in senescent BALB/c mice, but retain normal mitotic activity in vivo and in vitro. Clin Immunol Immunopathol 59(2):301–313

    Article  CAS  PubMed  Google Scholar 

  85. Birjandi SZ, Ippolito JA, Ramadorai AK, Witte PL (2011) Alterations in marginal zone macrophages and marginal zone B cells in old mice. J Immunol 186(6):3441–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin AM, Riley RL, Blomberg BB (2012) A molecular mechanism for TNF-alpha-mediated downregulation of B cell responses. J Immunol 188(1):279–286

    Article  CAS  PubMed  Google Scholar 

  87. Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP (2011) A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118(5):1294–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Russell Knode LM, Park HS, Maul RW, Gearhart PJ (2019) B cells from young and old mice switch isotypes with equal frequencies after ex vivo stimulation. Cell Immunol 345:103966

    Article  CAS  PubMed  Google Scholar 

  89. Gieni RS, Fang Y, Trinchieri G, Umetsu DT, DeKruyff RH (1996) Differential production of IL-12 in BALB/c and DBA/2 mice controls IL-4 versus IFN-gamma synthesis in primed CD4 lymphocytes. Int Immunol 8(10):1511–1520

    Article  CAS  PubMed  Google Scholar 

  90. Shibahara S, Okinaga S, Tomita Y, Takeda A, Yamamoto H, Sato M, Takeuchi T (1990) A point mutation in the tyrosinase gene of BALB/c albino mouse causing the cysteine----serine substitution at position 85. Eur J Biochem 189(2):455–461

    Article  CAS  PubMed  Google Scholar 

  91. Willott JF, Turner JG, Carlson S, Ding DL, Bross LS, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hearing Res 115(1–2):162–174

    Article  CAS  Google Scholar 

  92. Brodkin ES (2007) BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behavioural Brain Research 176(1):53–65

    Article  CAS  PubMed  Google Scholar 

  93. Heinla I, Ahlgren J, Vasar E, Voikar V (2018) Behavioural characterization of C57BL/6N and BALB/c female mice in social home cage - effect of mixed housing in complex environment. Physiol Behav 188:32–41

    Article  CAS  PubMed  Google Scholar 

  94. Sankoorikal GM, Kaercher KA, Boon CJ, Lee JK, Brodkin ES (2006) A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biol Psychiatry 59(5):415–423

    Article  CAS  PubMed  Google Scholar 

  95. Russo AM, Lawther AJ, Prior BM, Isbel L, Somers WG, Lesku JA, Richdale AL, Dissanayake C, Kent S, Lowry CA, Hale MW (2019) Social approach, anxiety, and altered tryptophan hydroxylase 2 activity in juvenile BALB/c and C57BL/6J mice. Behav Brain Res 359:918–926

    Article  CAS  PubMed  Google Scholar 

  96. Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305(5681):217

    Article  CAS  PubMed  Google Scholar 

  97. Rosenwasser AM (1990) Circadian activity rhythms in Balb/C mice - a weakly-coupled circadian system. J Interdiscipl Cycle 21(2):91–96

    Article  Google Scholar 

  98. Schwartz WJ, Zimmerman P (1990) Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10(11):3685–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Holmes MM, Mistlberger RE (2000) Food anticipatory activity and photic entrainment in food-restricted BALB/c mice. Physiology & Behavior 68(5):655–666

    Article  CAS  Google Scholar 

  100. Razzoli M, Carboni L, Andreoli M, Ballottari A, Arban R (2011) Different susceptibility to social defeat stress of BalbC and C57BL6/J mice. Behav Brain Res 216(1):100–108

    Article  PubMed  Google Scholar 

  101. Kalueff AV, Tuohimaa P (2005) Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav Brain Res 160(1):1–10

    Article  PubMed  Google Scholar 

  102. Guillot PV, Chapouthier G (1996) Intermale aggression and dark/light preference in ten inbred mouse strains. Behav Brain Res 77(1–2):211–213

    Article  CAS  PubMed  Google Scholar 

  103. Wahlsten D (1974) Heritable aspects of anomalous myelinated fibre tracts in the forebrain of the laboratory mouse. Brain Res 68(1):1–18

    Article  CAS  PubMed  Google Scholar 

  104. Livy DJ, Schalomon PM, Roy M, Zacharias MC, Pimenta J, Lent R, Wahlsten D (1997) Increased axon number in the anterior commissure of mice lacking a corpus callosum. Exp Neurol 146(2):491–501

    Article  CAS  PubMed  Google Scholar 

  105. Fairless AH, Dow HC, Toledo MM, Malkus KA, Edelmann M, Li HZ, Talbot K, Arnold SE, Abel T, Brodkin ES (2008) Low sociability is associated with reduced size of the corpus callosum in the BALB/cJ inbred mouse strain. Brain Research 1230:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fairless AH, Dow HC, Kreibich AS, Torre M, Kuruvilla M, Gordon E, Morton EA, Tan JH, Berrettini WH, Li HZ, Abel T, Brodkin ES (2012) Sociability and brain development in BALB/cJ and C57BL/6J mice. Behavioural Brain Research 228(2):299–310

    Article  PubMed  Google Scholar 

  107. Paigen B, Holmes PA, Mitchell D, Albee D (1987) Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis 64(2–3):215–221

    Article  CAS  PubMed  Google Scholar 

  108. Wang X, Ria M, Kelmenson PM, Eriksson P, Higgins DC, Samnegard A, Petros C, Rollins J, Bennet AM, Wiman B, de Faire U, Wennberg C, Olsson PG, Ishii N, Sugamura K, Hamsten A, Forsman-Semb K, Lagercrantz J, Paigen B (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37(4):365–372

    Article  CAS  PubMed  Google Scholar 

  109. Garner I, Minty AJ, Alonso S, Barton PJ, Buckingham ME (1986) A 5′ duplication of the alpha-cardiac actin gene in BALB/c mice is associated with abnormal levels of alpha-cardiac and alpha-skeletal actin mRNAs in adult cardiac tissue. EMBO J 5(10):2559–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ebbesen P (1971) Reticulosarcoma and amyloid development in BALB/c mice inoculated with syngeneic cells from young and old donors. J Natl Cancer Inst 47(6):1241–1245

    CAS  PubMed  Google Scholar 

  111. Peters RL, Rabstein LS, Spahn GJ, Madison RM, Huebner RJ (1972) Incidence of spontaneous neoplasms in breeding and retired breeder BALB-cCr mice throughout the natural life span. Int J Cancer 10(2):273–282

    Article  CAS  PubMed  Google Scholar 

  112. Dezfulian M, Zee T, DeOme KB, Blair PB, Weiss DW (1968) Role of the mammary tumor virus in the immunogenicity of spontaneous mammary carcinomas of BALB/c mice and in the responsiveness of the hosts. Cancer Res 28(9):1759–1772

    CAS  PubMed  Google Scholar 

  113. Morris VL, Vlasschaert JE, Beard CL, Milazzo MF, Bradbury WC (1980) Mammary tumors from BALB/c mice with a reported high mammary tumor incidence have acquired new mammary tumor virus DNA sequences. Virology 100(1):101–109

    Article  CAS  PubMed  Google Scholar 

  114. Potter M (1972) Immunoglobulin-producing tumors and myeloma proteins of mice. Physiol Rev 52(3):631–719

    Article  CAS  PubMed  Google Scholar 

  115. Potter M, Morrison S, Wiener F, Zhang XK, Miller FW (1994) Induction of plasmacytomas with silicone gel in genetically susceptible strains of mice. J Natl Cancer Inst 86(14):1058–1065

    Article  CAS  PubMed  Google Scholar 

  116. Cancro M, Potter M (1976) The requirement of an adherent cell substratum for the growth of developing plasmacytoma cells in vivo. J Exp Med 144(6):1554–1567

    Article  CAS  PubMed  Google Scholar 

  117. Morse HC III, Hartley JW, Potter M (1980) Genetic considerations in plasmacytomas of BALB/c, NZB, and (BALB/c X NZB) F1 mice. In: Potter M (ed) Progress in myeloma. Elsevier, North Holland, pp 263–279

    Chapter  Google Scholar 

  118. Potter M, Wax JS, Hansen CT, Kenny JJ (1999) BALB/c.CBA/N mice carrying the defective Btk (xid) gene are resistant to pristane-induced plasmacytomagenesis. Int Immunol 11(7):1059–1064

    Article  CAS  PubMed  Google Scholar 

  119. Pal Singh S, Dammeijer F, Hendriks RW (2018) Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer 17(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Grady HG, Stewart HL (1940) Histogenesis of induced pulmonary tumors in strain a mice. Am J Pathol 16(4):417–432

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Strong LC (1936) The establishment of the “A” strain of inbred mice. Journal of Heretidy 27(1):21–24

    Article  Google Scholar 

  122. Bittner JJ (1935) The breeding behavior and tumor incidence of an inbred albino strain of mice. Cancer Research 25(1):113–121

    Google Scholar 

  123. Dillingham BC, Benny Klimek ME, Gernapudi R, Rayavarapu S, Gallardo E, Van der Meulen JH, Jordan S, Ampong B, Gordish-Dressman H, Spurney CF, Nagaraju K (2015) Inhibition of inflammation with celastrol fails to improve muscle function in dysferlin-deficient A/J mice. J Neurol Sci 356(1–2):157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roche JA, Tulapurkar ME, Mueller AL, van Rooijen N, Hasday JD, Lovering RM, Bloch RJ (2015) Myofiber damage precedes macrophage infiltration after in vivo injury in dysferlin-deficient A/J mouse skeletal muscle. Am J Pathol 185(6):1686–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McFadyen MP, Kusek G, Bolivar VJ, Flaherty L (2003) Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain and Behavior 2(4):214–219

    Article  CAS  Google Scholar 

  126. Crawley JN (1996) Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci 19(5):181–182 discussion 188–189

    Article  CAS  PubMed  Google Scholar 

  127. Ingram DK, Jucker M (1999) Developing mouse models of aging: a consideration of strain differences in age-related behavioral and neural parameters. Neurobiol Aging 20(2):137–145

    Article  CAS  PubMed  Google Scholar 

  128. Zheng QY, Ding D, Yu H, Salvi RJ, Johnson KR (2009) A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice. Neurobiol Aging 30(10):1693–1705

    Article  CAS  PubMed  Google Scholar 

  129. Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A (2019) Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: a review. J Cell Physiol 234(6):7874–7884

    Article  CAS  PubMed  Google Scholar 

  130. Vincent AE, Rosa HS, Alston CL, Grady JP, Rygiel KA, Rocha MC, Barresi R, Taylor RW, Turnbull DM (2016) Dysferlin mutations and mitochondrial dysfunction. Neuromuscul Disord 26(11):782–788

    Article  PubMed  PubMed Central  Google Scholar 

  131. Han R, Campbell KP (2007) Dysferlin and muscle membrane repair. Curr Opin Cell Biol 19(4):409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hofhuis J, Bersch K, Bussenschutt R, Drzymalski M, Liebetanz D, Nikolaev VO, Wagner S, Maier LS, Gartner J, Klinge L, Thoms S (2017) Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J Cell Sci 130(5):841–852

    Article  CAS  PubMed  Google Scholar 

  133. Ho M, Post CM, Donahue LR, Lidov HG, Bronson RT, Goolsby H, Watkins SC, Cox GA, Brown RH Jr (2004) Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet 13(18):1999–2010

    Article  CAS  PubMed  Google Scholar 

  134. Kobayashi K, Izawa T, Kuwamura M, Yamate J (2010) The distribution and characterization of skeletal muscle lesions in dysferlin-deficient SJL and A/J mice. Exp Toxicol Pathol 62(5):509–517

    Article  CAS  PubMed  Google Scholar 

  135. Hornsey MA, Laval SH, Barresi R, Lochmuller H, Bushby K (2013) Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 23(5):377–387

    Article  PubMed  Google Scholar 

  136. Landau JM, Wang ZY, Yang GY, Ding W, Yang CS (1998) Inhibition of spontaneous formation of lung tumors and rhabdomyosarcomas in A/J mice by black and green tea. Carcinogenesis 19(3):501–507

    Article  CAS  PubMed  Google Scholar 

  137. Shimkin MB, Stoner GD (1975) Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res 21:1–58

    Article  CAS  PubMed  Google Scholar 

  138. Brooks RE (1968) Pulmonary adenoma of strain A mice: an electron microscopic study. J Natl Cancer Inst 41(3):719–742

    CAS  PubMed  Google Scholar 

  139. Stoner GD, Adam-Rodwell G, Morse MA (1993) Lung tumors in strain A mice: application for studies in cancer chemoprevention. J Cell Biochem Suppl 17F:95–103

    Article  CAS  PubMed  Google Scholar 

  140. D’Agostini F, Balansky RM, Bennicelli C, Lubet RA, Kelloff GJ, De Flora S (2001) Pilot studies evaluating the lung tumor yield in cigarette smoke-exposed mice. Int J Oncol 18(3):607–615

    PubMed  Google Scholar 

  141. Gordon T, Bosland M (2009) Strain-dependent differences in susceptibility to lung cancer in inbred mice exposed to mainstream cigarette smoke. Cancer Lett 275(2):213–220

    Article  CAS  PubMed  Google Scholar 

  142. Witschi H, Espiritu I, Dance ST, Miller MS (2002) A mouse lung tumor model of tobacco smoke carcinogenesis. Toxicol Sci 68(2):322–330

    Article  CAS  PubMed  Google Scholar 

  143. Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, McRoberts JA (2008) Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet 22(4):315–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A (2009) Genetic differences among C57BL/6 substrains. Exp Anim Tokyo 58(2):141–149

    Article  CAS  Google Scholar 

  145. Zurita E, Chagoyen M, Cantero M, Alonso R, Gonzalez-Neira A, Lopez-Jimenez A, Lopez-Moreno JA, Landel CP, Benitez J, Pazos F, Montoliu L (2011) Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Research 20(3):481–489

    Article  CAS  PubMed  Google Scholar 

  146. Dobrowolski P, Fischer M, Naumann R (2018) Novel insights into the genetic background of genetically modified mice. Transgenic Research 27(3):265–275

    Article  CAS  PubMed  Google Scholar 

  147. Kumar V, Kim K, Joseph C, Kourrich S, Yoo SH, Huang HC, Vitaterna MH, de Villena FP, Churchill G, Bonci A, Takahashi JS (2013) C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science 342(6165):1508–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  Google Scholar 

  149. Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, Sorg T, Wong K, Bedu E, Cartwright EJ, Dacquin R, Djebali S, Estabel J, Graw J, Ingham NJ, Jackson IJ, Lengeling A, Mandillo S, Marvel J, Meziane H, Preitner F, Puk O, Roux M, Adams DJ, Atkins S, Ayadi A, Becker L, Blake A, Brooker D, Cater H, Champy MF, Combe R, Danecek P, di Fenza A, Gates H, Gerdin AK, Golini E, Hancock JM, Hans W, Holter SM, Hough T, Jurdic P, Keane TM, Morgan H, Muller W, Neff F, Nicholson G, Pasche B, Roberson LA, Rozman J, Sanderson M, Santos L, Selloum M, Shannon C, Southwell A, Tocchini-Valentini GP, Vancollie VE, Westerberg H, Wurst W, Zi M, Yalcin B, Ramirez-Solis R, Steel KP, Mallon AM, de Angelis MH, Herault Y, Brown SD (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14(7):R82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Morales-Hernandez A, Martinat A, Chabot A, Kang G, McKinney-Freeman S (2018) Elevated oxidative stress impairs hematopoietic progenitor function in C57BL/6 substrains. Stem Cell Reports 11(2):334–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55(7):2153–2156

    Article  CAS  PubMed  Google Scholar 

  152. Fergusson G, Ethier M, Guevremont M, Chretien C, Attane C, Joly E, Fioramonti X, Prentki M, Poitout V, Alquier T (2014) Defective insulin secretory response to intravenous glucose in C57Bl/6J compared to C57Bl/6N mice. Mol Metab 3(9):848–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mulligan MK, Ponomarev I, Boehm SL 2nd, Owen JA, Levin PS, Berman AE, Blednov YA, Crabbe JC, Williams RW, Miles MF, Bergeson SE (2008) Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav 7(6):677–689

    Article  CAS  PubMed  Google Scholar 

  154. Oldford C, Kuksal N, Gill R, Young A, Mailloux RJ (2019) Estimation of the hydrogen peroxide producing capacities of liver and cardiac mitochondria isolated from C57BL/6N and C57BL/6J mice. Free Radic Biol Med 135:15–27

    Article  CAS  PubMed  Google Scholar 

  155. Fontaine DA, Davis DB (2016) Attention to background strain is essential for metabolic research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 65(1):25–33

    Article  CAS  PubMed  Google Scholar 

  156. Gray JE, Starmer J, Lin VS, Dickinson BC, Magnuson T (2013) Mitochondrial hydrogen peroxide and defective cholesterol efflux prevent in vitro fertilization by cryopreserved inbred mouse sperm. Biol Reprod 89(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Banks G, Heise I, Starbuck B, Osborne T, Wisby L, Potter P, Jackson IJ, Foster RG, Peirson SN, Nolan PM (2015) Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep. Neurobiol Aging 36(1):380–393

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bechard A, Meagher R, Mason G (2011) Environmental enrichment reduces the likelihood of alopecia in adult C57BL/6J mice. J Am Assoc Lab Anim Sci 50(2):171–174

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Johnson KR, Yu H, Ding D, Jiang H, Gagnon LH, Salvi RJ (2010) Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res 268(1–2):85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kendall A, Schacht J (2014) Disparities in auditory physiology and pathology between C57BL/6J and C57BL/6N substrains. Hearing Res 318:18–22

    Article  Google Scholar 

  161. Liron T, Raphael B, Hiram-Bab S, Bab IA, Gabet Y (2018) Bone loss in C57BL/6J-OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha-synuclein and multimerin-1 genes. J Cell Physiol 233(1):371–377

    Article  CAS  PubMed  Google Scholar 

  162. Sankaran JS, Varshney M, Judex S (2017) Differences in bone structure and unloading-induced bone loss between C57BL/6N and C57BL/6J mice. Mamm Genome 28(11–12):476–486

    Article  PubMed  Google Scholar 

  163. Sundberg JP, Taylor D, Lorch G, Miller J, Silva KA, Sundberg BA, Roopenian D, Sperling L, Ong D, King LE, Everts H (2011) Primary follicular dystrophy with scarring dermatitis in C57BL/6 mouse substrains resembles central centrifugal cicatricial alopecia in humans. Vet Pathol 48(2):513–524

    Article  CAS  PubMed  Google Scholar 

  164. Shoji H, Miyakawa T (2019) Age-related behavioral changes from young to old age in male mice of a C57BL/6J strain maintained under a genetic stability program. Neuropsychopharmacol Rep 39(2):100–118

    Article  PubMed  Google Scholar 

  165. Shoji H, Takao K, Hattori S, Miyakawa T (2016) Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 9:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T (2010) Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci 4:29

    PubMed  PubMed Central  Google Scholar 

  167. Cudalbu C, McLin VA, Lei H, Duarte JM, Rougemont AL, Oldani G, Terraz S, Toso C, Gruetter R (2013) The C57BL/6J mouse exhibits sporadic congenital portosystemic shunts. PLoS One 8(7):e69782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Smith RS, Roderick TH, Sundberg JP (1994) Microphthalmia and associated abnormalities in inbred black mice. Lab Anim Sci 44(6):551–560

    CAS  PubMed  Google Scholar 

  169. Felicio LS, Nelson JF, Finch CE (1980) Spontaneous pituitary tumorigenesis and plasma oestradiol in ageing female C57BL/6J mice. Exp Gerontol 15(2):139–143

    Article  CAS  PubMed  Google Scholar 

  170. Song HK, Hwang DY (2017) Use of C57BL/6N mice on the variety of immunological researches. Lab Anim Res 33(2):119–123

    Article  PubMed  PubMed Central  Google Scholar 

  171. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Moreth K, Fischer R, Fuchs H, Gailus-Durner V, Wurst W, Katus HA, Bekeredjian R, de Angelis MH (2014) High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. J Comp Physiol B 184(6):763–775

    Article  PubMed  Google Scholar 

  173. Shinomiya S, Mizuno S, Grimminger F, Ghofrani HA, Weissmann N, Seeger W, Kojonazarov B, Toga H, Schermuly RT (2018) Hypoxia-induced pulmonary hypertension in C57BL/6J and C57BL/6N mice: is there any difference? Am J Resp Crit Care 197:A3744

  174. Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53(6):2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mehalow AK, Kameya S, Smith RS, Hawes NL, Denegre JM, Young JA, Bechtold L, Haider NB, Tepass U, Heckenlively JR, Chang B, Naggert JK, Nishina PM (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12(17):2179–2189

    Article  CAS  PubMed  Google Scholar 

  176. Aredo B, Zhang K, Chen X, Wang CX, Li T, Ufret-Vincenty RL (2015) Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice. J Neuroinflammation 12:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Sturm M, Becker A, Schroeder A, Bilkei-Gorzo A, Zimmer A (2015) Effect of chronic corticosterone application on depression-like behavior in C57BL/6N and C57BL/6J mice. Genes Brain Behav 14(3):292–300

    Article  CAS  PubMed  Google Scholar 

  178. Rao MS, Dwivedi RS, Subbarao V, Reddy JK (1988) Induction of peroxisome proliferation and hepatic tumours in C57BL/6N mice by ciprofibrate, a hypolipidaemic compound. Br J Cancer 58(1):46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vogel SN, Hansen CT, Rosenstreich DL (1979) Characterization of a congenitally LPS-resistant, athymic mouse strain. J Immunol 122(2):619–622

    CAS  PubMed  Google Scholar 

  180. Deacon RM, Thomas CL, Rawlins JN, Morley BJ (2007) A comparison of the behavior of C57BL/6 and C57BL/10 mice. Behav Brain Res 179(2):239–247

    Article  CAS  PubMed  Google Scholar 

  181. Appelberg R, Leal IS, Pais TF, Pedrosa J, Florido M (2000) Differences in resistance of C57BL/6 and C57BL/10 mice to infection by Mycobacterium avium are independent of gamma interferon. Infect Immun 68(1):19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. McClive PJ, Huang D, Morahan G (1994) C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 39(4):286–288

    Article  CAS  PubMed  Google Scholar 

  183. Slingsby JH, Hogarth MB, Simpson E, Walport MJ, Morley BJ (1996) New microsatellite polymorphisms identified between C57BL/6, C57BL/10, and C57BL/KsJ inbred mouse strains. Immunogenetics 43(1–2):72–75

    CAS  PubMed  Google Scholar 

  184. Poltorak A, Smirnova I, Clisch R, Beutler B (2000) Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice. J Endotoxin Res 6(1):51–56

    Article  CAS  PubMed  Google Scholar 

  185. Wang Z, Dong B, Feng Z, Yu S, Bao Y (2015) A study on immunomodulatory mechanism of polysaccharopeptide mediated by TLR4 signaling pathway. BMC Immunol 16:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Chen W, KuoLee R, Shen H, Busa M, Conlan JW (2004) Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis. Microb Pathog 37(4):185–191

    Article  CAS  PubMed  Google Scholar 

  187. Pemberton AD, Knight PA, Gamble J, Colledge WH, Lee JK, Pierce M, Miller HR (2004) Innate BALB/c enteric epithelial responses to Trichinella spiralis: inducible expression of a novel goblet cell lectin, intelectin-2, and its natural deletion in C57BL/10 mice. J Immunol 173(3):1894–1901

    Article  CAS  PubMed  Google Scholar 

  188. Ruether K, Grosse J, Matthiessen E, Hoffmann K, Hartmann C (2000) Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. Invest Ophthalmol Vis Sci 41(12):4039–4047

    CAS  PubMed  Google Scholar 

  189. Greaves P (1996) The evaluation of potential human carcinogens: a histopathologist’s point of view. Exp Toxicol Pathol 48(2–3):169–174

    Article  CAS  PubMed  Google Scholar 

  190. Jones HB, Orton TC, Lake BG (2009) Effect of chronic phenobarbitone administration on liver tumour formation in the C57BL/10J mouse. Food Chem Toxicol 47(6):1333–1340

    Article  CAS  PubMed  Google Scholar 

  191. Rice MC, O’Brien SJ (1980) Genetic variance of laboratory outbred Swiss mice. Nature 283(5743):157–161

    Article  CAS  PubMed  Google Scholar 

  192. Clapcote SJ, Roder JC (2006) Deletion polymorphism of Disc1 is common to all 129 mouse substrains: implications for gene-targeting studies of brain function. Genetics 173(4):2407–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. P Natl Acad Sci USA 103(10):3693–3697

    Article  CAS  Google Scholar 

  194. Ritchie DJ, Clapcote SJ (2013) Disc1 deletion is present in Swiss-derived inbred mouse strains: implications for transgenic studies of learning and memory. Lab Anim 47(3):162–167

    Article  CAS  PubMed  Google Scholar 

  195. Dittrich L, Petese A, Jackson WS (2017) The natural Disc1-deletion present in several inbred mouse strains does not affect sleep. Sci Rep-Uk 7. doi: ARTN 5665

  196. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, St Clair DM, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9(9):1415–1423

    Article  CAS  PubMed  Google Scholar 

  197. Ishizuka K, Paek M, Kamiya A, Sawa A (2006) A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol Psychiatry 59(12):1189–1197

    Article  CAS  PubMed  Google Scholar 

  198. Tropea D, Hardingham N, Millar K, Fox K (2018) Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 596(14):2747–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dalke C, Graw J (2005) Mouse mutants as models for congenital retinal disorders. Exp Eye Res 81(5):503–512

    Article  CAS  PubMed  Google Scholar 

  200. Osman GE, Hannibal MC, Anderson JP, Lasky SR, Ladiges WC, Hood L (1999) FVB/N (H2(q)) mouse is resistant to arthritis induction and exhibits a genomic deletion of T-cell receptor V beta gene segments. Immunogenetics 49(10):851–859

    Article  CAS  PubMed  Google Scholar 

  201. Deringer MK (1970) Mammary tumors in strains BL-LyDe and SWR-LyDe mice. J Natl Cancer Inst 45(2):215–218

    CAS  PubMed  Google Scholar 

  202. Kutscher CL, Miller DG (1974) Age-dependent polydipsia in the SWR-J mouse. Physiol Behav 13(1):71–79

    Article  CAS  PubMed  Google Scholar 

  203. Kutscher CL, Miller M, Schmalbach NL (1975) Renal deficiency associated with diabetes insipidus in the SWR/J mouse. Physiol Behav 14(6):815–818

    Article  CAS  PubMed  Google Scholar 

  204. Leibowitz SF, Alexander J, Dourmashkin JT, Hill JO, Gayles EC, Chang GQ (2005) Phenotypic profile of SWR/J and A/J mice compared to control strains: possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Res 1047(2):137–147

    Article  CAS  PubMed  Google Scholar 

  205. Smith BK, Andrews PK, York DA, West DB (1999) Divergence in proportional fat intake in AKR/J and SWR/J mice endures across diet paradigms. Am J Physiol 277(3):R776–R785

    CAS  PubMed  Google Scholar 

  206. DiPetrillo K, Tsaih SW, Sheehan S, Johns C, Kelmenson P, Gavras H, Churchill GA, Paigen B (2004) Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol Genomics 17(2):215–220

    Article  CAS  PubMed  Google Scholar 

  207. Turner OC, Keefe RG, Sugawara I, Yamada H, Orme IM (2003) SWR mice are highly susceptible to pulmonary infection with Mycobacterium tuberculosis. Infect Immun 71(9):5266–5272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Reife RA, Loutis N, Watson WC, Hasty KA, Stuart JM (1991) SWR mice are resistant to collagen-induced arthritis but produce potentially arthritogenic antibodies. Arthritis Rheum 34(6):776–781

    Article  CAS  PubMed  Google Scholar 

  209. Erickson RP, Tachibana DK, Herzenberg LA, Rosenberg LT (1964) A single gene controlling hemolytic complement and a serum antigen in the mouse. J Immunol 92:611–615

    CAS  PubMed  Google Scholar 

  210. Rabstein LS, Peters RL, Spahn GJ (1973) Spontaneous tumors and pathologic lesions in Swr/J mice. J Natl Cancer I 50(3):751–758

    Article  CAS  Google Scholar 

  211. Beamer WG, Hoppe PC, Whitten WK (1985) Spontaneous malignant granulosa cell tumors in ovaries of young SWR mice. Cancer Res 45(11 Pt 2):5575–5581

    CAS  PubMed  Google Scholar 

  212. Rayavarapu S, Van der Meulen JH, Gordish-Dressman H, Hoffman EP, Nagaraju K, Knoblach SM (2010) Characterization of dysferlin deficient SJL/J mice to assess preclinical drug efficacy: fasudil exacerbates muscle disease phenotype. PLoS One 5(9):e12981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Bittner RE, Anderson LV, Burkhardt E, Bashir R, Vafiadaki E, Ivanova S, Raffelsberger T, Maerk I, Hoger H, Jung M, Karbasiyan M, Storch M, Lassmann H, Moss JA, Davison K, Harrison R, Bushby KM, Reis A (1999) Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nat Genet 23(2):141–142

    Article  CAS  PubMed  Google Scholar 

  214. Cavalieri VM, Sollberger A, Bliss DK (1980) Rhythmicity of intermale aggression in mice - potential pineal influences. J Interdiscipl Cycle 11(4):299–324

    Article  Google Scholar 

  215. Lee CT, Crump M (1980) A possible confound and the role of olfaction in mouse aggressive interactions. Aggressive Behav 6(2):131–138

    Article  Google Scholar 

  216. Watanabe N, Kojima S, Ovary Z (1976) Suppression of IgE antibody production in SJL mice. I. Nonspecific suppressor T cells. J Exp Med 143(4):833–845

    Article  CAS  PubMed  Google Scholar 

  217. Hutchings PR, Varey AM, Cooke A (1986) Immunological defects in Sjl mice. Immunology 59(3):445–450

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Yoshimoto T, Bendelac A, Huli J, Paul WE (1995) Defective Ige production by Sjl mice is linked to the absence of Cd4(+), Nk1.1(+) T-cells that promptly produce interleukin-4. P Natl Acad Sci USA 92(25):11931–11934

    Article  CAS  Google Scholar 

  219. Terry RL, Ifergan I, Miller SD (2016) Experimental autoimmune encephalomyelitis in mice. Methods Mol Biol 1304:145–160

    Article  PubMed  PubMed Central  Google Scholar 

  220. Mangalam A, Poisson L, Nemutlu E, Datta I, Denic A, Dzeja P, Rodriguez M, Rattan R, Giri S (2013) Profile of circulatory metabolites in a relapsing-remitting animal model of multiple sclerosis using global metabolomics. J Clin Cell Immunol 4. https://doi.org/10.4172/2155-9899.1000150

  221. Matarese G, Sanna V, Di Giacomo A, Lord GM, Howard JK, Bloom SR, Lechler RI, Fontana S, Zappacosta S (2001) Leptin potentiates experimental autoimmune encephalomyelitis in SJL female mice and confers susceptibility to males. Eur J Immunol 31(5):1324–1332

    Article  CAS  PubMed  Google Scholar 

  222. Carswell EA, Wanebo HJ, Old LJ, Boyse EA (1970) Immunogenic properties of reticulum cell sarcomas of SJL/J mice. J Natl Cancer Inst 44(6):1281–1288

    CAS  PubMed  Google Scholar 

  223. Haran-Ghera N, Ben-Yaakov M, Peled A, Bentwich Z (1973) Immune status of SJL-J mice in relation to age and spontaneous tumor development. J Natl Cancer Inst 50(5):1127–1135

    Article  CAS  PubMed  Google Scholar 

  224. East J (1970) Immunopathology and neoplasms in New Zealand black (NZB) and SJL-J mice. Prog Exp Tumor Res 13:84–134

    Article  CAS  PubMed  Google Scholar 

  225. Taketo M, Schroeder AC, Mobraaten LE, Gunning KB, Hanten G, Fox RR, Roderick TH, Stewart CL, Lilly F, Hansen CT et al (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci U S A 88(6):2065–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Auerbach AB, Norinsky R, Ho W, Losos K, Guo Q, Chatterjee S, Joyner AL (2003) Strain-dependent differences in the efficiency of transgenic mouse production. Transgenic Res 12(1):59–69

    Article  CAS  PubMed  Google Scholar 

  227. Cook MN, Williams RW, Flaherty L (2001) Anxiety-related behaviors in the elevated zero-maze are affected by genetic factors and retinal degeneration. Behav Neurosci 115(2):468–476

    Article  CAS  PubMed  Google Scholar 

  228. Errijgers V, Van Dam D, Gantois I, Van Ginneken CJ, Grossman AW, D’Hooge R, De Deyn PP, Kooy RF (2007) FVB.129P2-Pde6b(+) Tyr(c-ch)/Ant, a sighted variant of the FVB/N mouse strain suitable for behavioral analysis. Genes Brain and Behavior 6(6):552–557

    Article  CAS  Google Scholar 

  229. Simirskii VN, Lee RS, Wawrousek EF, Duncan MK (2006) Inbred FVB/N mice are mutant at the cp49/Bfsp2 locus and lack beaded filament proteins in the lens. Invest Ophthalmol Vis Sci 47(11):4931–4934

    Article  PubMed  Google Scholar 

  230. Pugh PL, Ahmed SF, Smith MI, Upton N, Hunter AJ (2004) A behavioural characterisation of the FVB/N mouse strain. Behav Brain Res 155(2):283–289

    Article  PubMed  Google Scholar 

  231. Girard SD, Escoffier G, Khrestchatisky M, Roman FS (2016) The FVB/N mice: a well suited strain to study learning and memory processes using olfactory cues. Behavioural Brain Research 296:254–259

    Article  PubMed  Google Scholar 

  232. Goelz MF, Mahler J, Harry J, Myers P, Clark J, Thigpen JE, Forsythe DB (1998) Neuropathologic findings associated with seizures in FVB mice. Lab Anim Sci 48(1):34–37

    CAS  PubMed  Google Scholar 

  233. Silva-Fernandes A, Oliveira P, Sousa N, Maciel P (2010) Motor and behavioural abnormalities associated with persistent spontaneous epilepsy in the fvb/n mouse strain. Scand J Lab Anim Sci 37(3):213–222

    CAS  Google Scholar 

  234. Royle SJ, Collins FC, Rupniak HT, Barnes JC, Anderson R (1999) Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Research 816(2):337–349

    Article  CAS  PubMed  Google Scholar 

  235. McCord MC, Lorenzana A, Bloom CS, Chancer ZO, Schauwecker PE (2008) Effect of age on kainate-induced seizure severity and cell death. Neuroscience 154(3):1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, Levin LF, Shu P, Moore KJ, Breslow JL, Smith JD (1999) Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19(8):1960–1968

    Article  CAS  PubMed  Google Scholar 

  237. Idel S, Dansky HM, Breslow JL (2003) A20, a regulator of NFkappaB, maps to an atherosclerosis locus and differs between parental sensitive C57BL/6J and resistant FVB/N strains. Proc Natl Acad Sci U S A 100(24):14235–14240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Moll HP, Lee A, Minussi DC, da Silva CG, Csizmadia E, Bhasin M, Ferran C (2014) A20 regulates atherogenic interferon (IFN)-gamma signaling in vascular cells by modulating basal IFNbeta levels. J Biol Chem 289(45):30912–30924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wong K, Bumpstead S, Van Der Weyden L, Reinholdt LG, Wilming LG, Adams DJ, Keane TM (2012) Sequencing and characterization of the FVB/NJ mouse genome. Genome Biol 13(8):R72

    Article  PubMed  PubMed Central  Google Scholar 

  240. Mahler JF, Stokes W, Mann PC, Takaoka M, Maronpot RR (1996) Spontaneous lesions in aging FVB/N mice. Toxicol Pathol 24(6):710–716

    Article  CAS  PubMed  Google Scholar 

  241. Nieto AI, Shyamala G, Galvez JJ, Thordarson G, Wakefield LM, Cardiff RD (2003) Persistent mammary hyperplasia in FVB/N mice. Comp Med 53(4):433–438

    CAS  PubMed  Google Scholar 

  242. Wakefield LM, Thordarson G, Nieto AI, Shyamala G, Galvez JJ, Anver MR, Cardiff RD (2003) Spontaneous pituitary abnormalities and mammary hyperplasia in FVB/NCr mice: implications for mouse modeling. Comp Med 53(4):424–432

    CAS  PubMed  Google Scholar 

  243. Radaelli E, Arnold A, Papanikolaou A, Garcia-Fernandez RA, Mattiello S, Scanziani E, Cardiff RD (2009) Mammary tumor phenotypes in wild-type aging female FVB/N mice with pituitary prolactinomas. Vet Pathol 46(4):736–745

    Article  CAS  PubMed  Google Scholar 

  244. Latonen L, Kujala P, Visakorpi T (2016) Incidence of mucinous metaplasia in the prostate of FVB/N mice (Mus musculus). Comp Med 66(4):286–289

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T (1997) Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 8(6):390–393

    Article  CAS  PubMed  Google Scholar 

  246. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16(1):19–27

    Article  CAS  PubMed  Google Scholar 

  247. Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19(5):177–181

    Article  CAS  PubMed  Google Scholar 

  248. Cook MN, Bolivar VJ, McFadyen MP, Flaherty L (2002) Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behavioral Neuroscience 116(4):600–611

    Article  PubMed  Google Scholar 

  249. Adams DJ, Quail MA, Cox T, van der Weyden L, Gorick BD, Su Q, Chan WI, Davies R, Bonfield JK, Law F, Humphray S, Plumb B, Liu P, Rogers J, Bradley A (2005) A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics 86(6):753–758

    Article  CAS  PubMed  Google Scholar 

  250. Montkowski A, Poettig M, Mederer A, Holsboer F (1997) Behavioural performance in three substrains of mouse strain 129. Brain Res 762(1–2):12–18

    Article  CAS  PubMed  Google Scholar 

  251. Balogh SA, McDowell CS, Stavnezer AJ, Denenberg VH (1999) A behavioral and neuroanatomical assessment of an inbred substrain of 129 mice with behavioral comparisons to C57BL/6J mice. Brain Res 836(1–2):38–48

    Article  CAS  PubMed  Google Scholar 

  252. Boleij H, Salomons AR, van Sprundel M, Arndt SS, Ohl F (2012) Not all mice are equal: welfare implications of behavioural habituation profiles in four 129 mouse substrains. PLoS One 7(8):e42544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Tanimoto Y, Iijima S, Hasegawa Y, Suzuki Y, Daitoku Y, Mizuno S, Ishige T, Kudo T, Takahashi S, Kunita S, Sugiyama F, Yagami K (2008) Embryonic stem cells derived from C57BL/6J and C57BL/6N mice. Comp Med 58(4):347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Coulombe P, Gregoire D, Tsanov N, Mechali M (2013) A spontaneous Cdt1 mutation in 129 mouse strains reveals a regulatory domain restraining replication licensing. Nat Commun 4:2065

    Article  PubMed  CAS  Google Scholar 

  255. Stevens LC, Hummel KP (1957) A description of spontaneous congenital testicular teratomas in strain 129 mice. J Natl Cancer Inst 18(5):719–747

    CAS  PubMed  Google Scholar 

  256. Stevens LC, Little CC (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A 40(11):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Stevens LC (1973) A new inbred subline of mice (129-terSv) with a high incidence of spontaneous congenital testicular teratomas. J Natl Cancer Inst 50(1):235–242

    Article  CAS  PubMed  Google Scholar 

  258. Anderson PD, Nelson VR, Tesar PJ, Nadeau JH (2009) Genetic factors on mouse chromosome 18 affecting susceptibility to testicular germ cell tumors and permissiveness to embryonic stem cell derivation. Cancer Res 69(23):9112–9117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Heaney JD, Anderson EL, Michelson MV, Zechel JL, Conrad PA, Page DC, Nadeau JH (2012) Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 139(9):1577–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hino T, Oda K, Nakamura K, Toyoda Y, Yokoyama M (2009) Low fertility in vivo resulting from female factors causes small litter size in 129 inbred mice. Reprod Med Biol 8(4):157–161

    Article  PubMed  PubMed Central  Google Scholar 

  261. Reardon S (2017) Lab mice’s ancestral ‘Eve’ gets her genome sequenced. Nature 551(7680):281

    Article  CAS  PubMed  Google Scholar 

  262. Vanden Berghe T, Hulpiau P, Martens L, Vandenbroucke RE, Van Wonterghem E, Perry SW, Bruggeman I, Divert T, Choi SM, Vuylsteke M, Shestopalov VI, Libert C, Vandenabeele P (2015) Passenger mutations confound interpretation of all genetically modified congenic mice. Immunity 43(1):200–209

    Article  PubMed Central  CAS  Google Scholar 

  263. Dixon J, Dixon MJ (2004) Genetic background has a major effect on the penetrance and severity of craniofacial defects in mice heterozygous for the gene encoding the nucleolar protein Treacle. Dev Dyn 229(4):907–914

    Article  CAS  PubMed  Google Scholar 

  264. Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva-Paylor LA, Paylor R (2011) Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res 4(1):40–56

    Article  PubMed  PubMed Central  Google Scholar 

  265. Doetschman T (2009) Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol 530:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Moy SS, Nadler JJ, Young NB, Nonneman RJ, Grossman AW, Murphy DL, D’Ercole AJ, Crawley JN, Magnuson TR, Lauder JM (2009) Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 8(2):129–142

    Article  CAS  PubMed  Google Scholar 

  267. van Wyk M, Schneider S, Kleinlogel S (2015) Variable phenotypic expressivity in inbred retinal degeneration mouse lines: a comparative study of C3H/HeOu and FVB/N rd1 mice. Mol Vis 21:811–827

    PubMed  PubMed Central  Google Scholar 

  268. Wolf JB, Leamy LJ, Routman EJ, Cheverud JM (2005) Epistatic pleiotropy and the genetic architecture of covariation within early and late-developing skull trait complexes in mice. Genetics 171(2):683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Linder CC (2006) Genetic variables that influence phenotype. Ilar J 47 (2):132–140. doi. https://doi.org/10.1093/ilar.47.2.132

  270. van der Staay FJ, Steckler T (2001) Behavioural phenotyping of mouse mutants. Behav Brain Res 125(1–2):3–12

    Article  PubMed  Google Scholar 

  271. Richter SH, Garner JP, Wurbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6(4):257–261

    Article  CAS  PubMed  Google Scholar 

  272. Wurbel H (2002) Behavioral phenotyping enhanced--beyond (environmental) standardization. Genes Brain Behav 1(1):3–8

    Article  CAS  PubMed  Google Scholar 

  273. Richter SH, Garner JP, Zipser B, Lewejohann L, Sachser N, Touma C, Schindler B, Chourbaji S, Brandwein C, Gass P, van Stipdonk N, van der Harst J, Spruijt B, Voikar V, Wolfer DP, Wurbel H (2011) Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. PLoS One 6(1):e16461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by The Hong Kong Polytechnic University (ZVN0).

Author information

Authors and Affiliations

Authors

Contributions

WYT and KKC wrote this review article.

Corresponding author

Correspondence to Kwok-Kuen Cheung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, W.Y., Cheung, KK. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med 98, 1215–1234 (2020). https://doi.org/10.1007/s00109-020-01953-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01953-4

Keywords

Navigation